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Read all of the following information before starting the exam:

• This test has 3 problems and is worth 150 points total. It is your responsibility to
make sure that you have all of the pages.

• Keep your answers precise and concise. Show all work, clearly and in order, or else
points will be deducted, even if your final answer is correct.

• Don’t spend too much time on one problem. Read through all the problems carefully
and do the easy ones first. Try to understand the problems intuitively; it really helps
to draw a picture.

• Good luck!

Problem Part Max Score Score

1

a 10
b 10
c 10
d 10
e 10

2

a 10
b 10
c 10
d 10
e 10

3

a 10
b 10
c 10
d 10
e 10

Total Score: + + =
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1. Enchaining Realm (50 points)
This problem is about machine learning.

a. (10 points)
Suppose we want to predict a real-valued output y ∈ R given an input x = (x1, x2) ∈ R2,

which is represented by a feature vector φ(x) = (x1, |x1 − x2|).
Consider the following training set of (x, y) pairs:

Dtrain = {((1, 2), 2), ((1, 1), 1), ((2, 1), 3)}. (1)

We use a modified squared loss function, which penalizes overshooting twice as much as
undershooting:

Loss(x, y,w) =

{
1
2
(w · φ(x)− y)2 if w · φ(x) < y

(w · φ(x)− y)2 otherwise
(2)

Using a fixed learning rate of η = 1, apply the stochastic gradient descent algorithm on
this training set starting from w = [0, 0] after looping through each example (x, y) in order
and performing the following update:

w← w − η∇wLoss(x, y,w). (3)

For each example in the training set, calculate the loss on that example and update the
weight vector w to fill in the table below:

x φ(x) Loss(x, y,w) ∇wLoss(x, y,w) weights w
Initialization n/a n/a n/a n/a [0, 0]

After example 1 (1,2)
After example 2 (1,1)
After example 3 (2,1)
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b. (10 points)
Consider the following set of 6 points in the plane:

{A = (0, 0), B = (1, 0), C = (0, 3), D = (1, 3), E = (5, 7), F = (8, 12)} (4)

You’d like to partition the points into two clusters, where each cluster is represented by a
centroid µk that is constrained to lie on the diagonal line; formally, µk = [ck, ck] for k ∈ {1, 2}.

Recall that the reconstruction loss is the sum of squared distances from each point to
the centroid it is assigned to. Modify the K-means algorithm to minimize this loss while
respecting the diagonal constraint.

Suppose we have K = 2 clusters which are initialized with c1 = 3 and c2 = 11. Break ties,
if any, by assigning a point to the centroid farther away from the origin. Run two iterations
of K-means, filling out the values below:

Iteration Task Value

1. Assignment zi = 1: (i)

1. Assignment zi = 2: (ii)

1. New c1: (iii)

1. New c2: (iv)

1. Reconstruction loss after updating centroids: (v)

2. Assignment zi = 1: (vi)

2. Assignment zi = 2: (vii)

2. New c1: (viii)

2. New c2: (ix)

2. Reconstruction loss after updating centroids: (x)
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c. (10 points)
Given two images x1 and x2, our goal is to predict whether they are of the same person

(y = 1) or not (y = −1).

We build the following model: We have a feature extractor that maps an image x to a
feature vector φ(x) ∈ Rd. For each j = 1, . . . , K, define hj(x) = vj · φ(x). Intuitively, each
parameter vj ∈ Rd corresponds to a direction; hj(x) corresponds to the projection of φ(x)
along that direction.

Given a weight vector w = (w1, . . . , wK), the classification score on an input (x1, x2) is
defined as:

s(x1, x2) =
K∑
j=1

wjhj(x1)hj(x2). (5)

As an example, for K = d = 2, if the parameters were v1 = (1, 0),v2 = (0, 1),w = (3, 4),
then the classification score would be 3φ(x1)1φ(x2)1 + 4φ(x1)2φ(x2)2.

Prove that there exists a new feature extractor Amapping (x1, x2) to a d2-dimensional fea-
ture vector A(x1, x2) ∈ Rd2 , such that for any scoring function s (defined by v1, . . . ,vK ,w),
there exists a new weight vector u ∈ Rd2 with s(x1, x2) = u · A(x1, x2). In other words,
the scoring functions in (5) can be represented by linear functions with appropriate features.
You must define u explicitly.
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d. (10 points)
Suppose we are performing classification where the input points are of the form (x1, x2) ∈

R2. We can choose any subset of the following set of features:

F =

{
x21, x

2
2, x1x2, x1, x2,

1

x1
,

1

x2
, 1,1[x1 ≥ 0],1[x2 ≥ 0]

}
(6)

For each subset of features F ⊆ F , let D(F ) be the set of all decision boundaries corre-
sponding to linear classifiers that use features F .

For each of the following sets of decision boundaries E, provide the minimal F such that
D(F ) ⊇ E. If no such F exists, write ‘none’.

• E is all lines:

(7)

• E is all circles centered at the origin:

(8)

• E is all circles:

(9)

• E is all axis-aligned rectangles:

(10)

• E is all axis-aligned rectangles whose lower-right corner is at (0, 0):

(11)
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e. (10 points)
For each of the following problems, circle all correct options. There may be multiple

correct options for a particular question.

• Hyperparameters should be tuned to minimize error on the

– Training set

– Development set

– Test set

• The majority algorithm (which outputs the most common label based on the training
data) for classification has

– High bias

– High variance

– Low bias

– Low variance

• Suppose our learning algorithm for a particular task has very low training error but
large test error. Which of the following changes to our algorithm could fix this?

– Increasing the number of features

– Decreasing the number of features

– Increasing the number of SGD iterations

– Decreasing the number of SGD iterations

– Adding more training examples

– Adding a regularization penalty
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2. States (50 points)
Sabina has just moved to a new town, which is represented as a grid of locations (see

below). She needs to visit various shops S1, . . . , Sk. From a location on the grid, Sabina can
move to the location that is immediately north, south, east, or west, but certain locations
have been blocked off and she cannot enter them. It takes one unit of time to move between
adjacent locations. Here is an example layout of the town:

(2,5) (3,5) (4,5)

(1,4) (2,4)

S1

(3,4) (4,4)

S2

(5,4)

(1,3) (2,3) (4,3) (5,3)

(2,2) (3,2) (4,2) (5,2)

S3

(1,1)

House

(2,1) (3,1)

S4

(4,1) (5,1)

Sabina lives at (1, 1), and no location contains more than one building (Sabina’s house
or a shop).

a. (10 points)
Sabina wants to start at her house, visit the shops S1, . . . , Sk in any order, and then

return to her house as quickly as possible. We will construct a search problem to find the
fastest route for Sabina. Each state is modeled as a tuple s = (x, y, A), where (x, y) is
Sabina’s current position, and A is some auxiliary information that you need to choose. If
an action is invalid from a given state, set its cost to infinity. Let V be the set of valid
(non-blocked) locations; use this to define your search problem. You may assume that the
locations of the k shops are known. You must choose a minimal representation of A and
solve this problem for general k. Be precise!

• Describe A:

• sstart =

• Actions((x, y, A)) = {N, S,E,W}
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• Succ((x, y, A), a) =

• Cost((x, y, A), a) =

• IsGoal((x, y, A)) =

Now we will tweak the problem. Sabina must visit the shops S1, S2, . . . , Sk in that
order. She is allowed to step in the location of a shop without visiting it. Assuming that
each state is still (x, y, A), how would you modify A to solve the constrained version of this
problem? Again, make A as minimal as possible and be precise.
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b. (10 points)
Sabina is now again allowed to visit the shops in any order. But she is impatient and

doesn’t want to wait around for your search algorithm to finish running. In response, you
will use the A* algorithm, but you need a heuristic. For each pair of shops (Si, Sj) where
i 6= j and 1 ≤ i, j ≤ k, define a consistent heuristic hi,j that approximates the time it takes
to ensure that shops Si and Sj are visited and then return home. Computing hi,j(s) should
take O(1) time.

Now, let each hi,j be an arbitrary consistent heuristic. Let h(s) be the heuristic that
takes a weighted sum of these heuristics; that is, h(s) =

∑
i 6=j αi,jhi,j(s), for some numbers

αi,j ≥ 0. For which values of αi,j is the heuristic h guaranteed to be consistent?
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c. (10 points)
Little did Sabina realize what a strange town she had moved to. It seems like whenever

she tries to visit a shop, it’s closed! Let’s model this as a two-step game: Sabina moves
first, choosing either shop 1 or shop 2. Then each shop i decides to open for Sabina with
probability pi. If Sabina visits shop i and it is open, then she gets utility 10i. If it is closed,
then she gets utility 0.

• What is the expected utility of the game? For what values of p1 and p2 would Sabina
visit shop 1?

• Suppose that at the town, you get to make one of the shops adversarial and the other
shop open with probability 1

2
. Which shop would you make adversarial to minimize

the expected utility for Sabina (assuming Sabina will know which shop you choose to
be the adversary)?
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d. (10 points)
Sabina wants to go from her house (located at 1) to the gym (located at n). At each

location s, she can either (i) deterministically walk forward to the next location s+ 1 (takes
1 unit of time) or (ii) wait for the bus. The bus comes with probability ε, in which case,
she will reach the gym in 1 + α(n− s) units of time, where α is some parameter. If the bus
doesn’t come, well, she stays put, and that takes 1 unit of time.

1 2 3 4 ... n

House ... Gym

We have formalized the problem as an MDP for you:

• State: s ∈ {0, 1, . . . , n} is Sabina’s location

• Actions(s) = {Walk,Bus}

• Reward(s,Walk, s′) =

{
−1 if s′ = s+ 1

−∞ otherwise

• Reward(s,Bus, s′) =


−1− α(n− s) if s′ = n

−1 if s′ = s

−∞ otherwise

• T (s,Walk, s′) =

{
1 if s′ = s+ 1

0 otherwise

• T (s,Bus, s′) =


ε if s′ = n

1− ε if s′ = s

0 otherwise

• IsEnd(s) = 1[s = n]
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Compute a closed form expression for the value of the “always walk” policy and the
“always wait for the bus” policy (using some or all of the variables ε, α, n).

• VWalk(s) =

• VBus(s) =

• For what values of ε (as a function of α and n) is it advantageous to walk rather than
take the bus?
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e. (10 points)
Not surprisingly, buses operate strangely in this town, and we will now assume instead

that Sabina doesn’t know the reward function nor the transition probabilities. She decides
to use reinforcement learning to find out. She starts by going around town using the two
different modes of transportation:

s0 a1 r1 s1 a2 r2 s2 a3 r3 s3 a4 r4 s4 a5 r5 s5
1 Bus -1 1 Bus -1 1 Bus 3 3 Walk 1 4 Walk 1 5

Run the Q-learning algorithm once over the given data to compute an estimate of the optimal
Q-value Qopt(s, a). Process the episodes from left to right. Assume all Q-values are initialized
to zero, and use a learning rate of η = 0.5 and a discount of γ = 1.

• Q̂(1,Walk) =

• Q̂(1,Bus) =

• Q̂(3,Walk) =

• Q̂(3,Bus) =

• Q̂(4,Walk) =

• Q̂(4,Bus) =
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3. Variables and Logic (50 points)
It’s Friday night, and you and your friends go out to dinner in anticipation of the Big

Game the next day (go Card!). Since you’ve just been working on your final project for
CS221, you are seeing CSPs and Bayesian networks everywhere!

a. (10 points)
You and your friends (Veronica, Jarvis, Gabriela, Kanti) sit around a table like this:

Veggie Chicken Beef

Y

Veggie Chicken Beef

V

Veggie Chicken Beef

J

Veggie Chicken Beef

G

Veggie Chicken Beef

K

There are three dishes on the menu: the vegetarian deep dish pizza, the chicken quesadilla,
and the beef cheeseburger. Each person will order exactly one dish.

But what started out as a simple dinner has quickly turned into a logistical nightmare
because of all the constraints you and your friends impose upon yourselves:

1. Each person must order something different than the people sitting immediately next
to him/her.

2. You (Y ) are vegetarian.

3. If Veronica (V ) orders beef, then Jarvis (J) will order veggie.

4. Kanti (K) and Jarvis (J) cannot both get non-chicken dishes.

Draw the potentials for the above constraints and write the propositional formula above
each potential (e.g., [Y = Veggie]). Then for each pair of variables, enforce arc consistency
in both directions, crossing out the appropriate values from the domains.
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b. (10 points)
Your server comes by your table and tells you that they are out of beef today, so you all

decide to rework your constraints. Now they are:

1. There is a preference for people sitting next to each other to order different dishes.
Formally, we have 5 potentials: f(Y, J) = 1[Y 6= J ] + 1, f(J,K) = 1[J 6= K] + 1, etc.

2. You (Y ) are vegetarian.

With the 2 constraints above, what is a maximum weight assignment and what is its
weight? If there are many assignments with the same maximum weight, give any one. For
convenience, the updated table is given below.

Veggie Chicken

Y

Veggie Chicken

V

Veggie Chicken

J

Veggie Chicken

G

Veggie Chicken

K
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c. (10 points)
Now that you and your friends have your food, you are watching the highlights from

yesterday’s football game. As you watch a particular four-down sequence, you have an
epiphany: football is a glorified Bayesian network.

On each play t ∈ {1, 2, 3, . . . }, the quarterback will either (1) run the ball, (2) throw a
short pass, or (3) throw a long pass. Let Xt ∈ {1, 2, 3} denote the quarterback’s move, and
Et be the number of yards advanced as a result. Assume that X1 is chosen uniformly at
random from {1, 2, 3}.

Before the game starts, the team decides on one of the two strategies (S ∈ {A,B}),
which is chosen uniformly at random and is held constant throughout the game: if S = A,
then the quarterback uses α = 1

2
; if S = B, then the quarterback uses α = 1

4
.

On each t, the quarterback performs the same move as the last time (Xt = Xt−1) with
probability α, and one of the other two each with probability 1−α

2
. When a play x ∈ {1, 2, 3}

is made, the ball is advanced 5x yards with probability 2−x and 0 yards with probability
1− 2−x.

• Draw the Bayesian network for corresponding to the football model described above,
using t ∈ {1, 2, 3, 4}. Recall that the variables are S,X1, . . . , X4, E1, . . . , E4.

• Draw the factor graph associated with the Bayesian network corresponding to this
football model. You are not required to write the potentials for each factor.
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d. (10 points)
You saw that the first play was a long pass (X1 = 3) which resulted in advancing the ball

E1 = 15 yards (this happened with probability 1
8
). Then while you were busy constructing

your Bayesian network, you missed what happened in the second time step, but you found
out that only five yards were gained on the third play (E3 = 5). You do not remember the
yard line the ball was previously at, so you have no knowledge about what type of play was
run on the second down or what its result was. What is the probability that the team is
playing strategy A? In other words, compute:

P(S = A | X1 = 3, E1 = 15, E3 = 5).
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e. (10 points)
You realize that the football model you made up was pretty lousy, and it’s better to learn

the model from data. You will use the same Bayesian network as before, but now just learn
the weights. In this new model, any play can gain either 0, 5, or 10 yards. Teams still play
with one of the two strategies: strategy S = A and strategy S = B, although they may not
have the same interpretation they had before. As more highlights flash across the screen, the
sportscaster announces the strategy and you write the plays down furiously on your napkin:

• Strategy A: (2, 0), (1, 0)

• Strategy B: (1, 5), (1, 0), (1, 10), (3, 0)

• Strategy A: (3, 5), (2, 0), (1, 10), (1, 0), (3, 10)

This means that the first sequence was with strategy A, which involved two plays: (short
pass, 0 yardage) and (run, 0 yardage). The next sequence involved strategy B, etc. Each
sequence is independent.

Use Laplace smoothing with λ = 1.

xt et p(et | xt)
1 0
1 5
1 10
2 0
2 5
2 10
3 0
3 5
3 10

s xt−1 xt p(xt | xt−1, s)
A 1 1
A 1 2
A 1 3
A 2 1
A 2 2
A 2 3
A 3 1
A 3 2
A 3 3
B 1 1
B 1 2
B 1 3
B 2 1
B 2 2
B 2 3
B 3 1
B 3 2
B 3 3
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