
Lecture 4: Machine learning III

CS221 / Autumn 2019 / Liang & Sadigh

Announcements

• Homework 1 (foundations): Thursday 11pm is 2 late day hard
deadline

• Section Thursday 3:30pm: backpropagation example, nearest
neighbors, scikit-learn

CS221 / Autumn 2019 / Liang & Sadigh 1

Review: feature extractor

abc@gmail.com

length>10 : 1

fracOfAlpha : 0.85

contains @ : 1

endsWith com : 1

endsWith org : 0

feature extractor

arbitrary!

CS221 / Autumn 2019 / Liang & Sadigh 2

• Last lecture, we spoke at length about the importance of features, how to organize them using feature
templates, and how we can get interesting non-linearities by choosing the feature extractor φ judiciously.
This is you using all your domain knowledge about the problem.

Review: prediction score

• Linear predictor: score = w · φ(x)

• Neural network: score =
∑k

j=1 wjσ(vj · φ(x))

CS221 / Autumn 2019 / Liang & Sadigh 4

• Given the feature extractor φ, we can use that to define a prediction score, either using a linear predictor
or a neural network. If you use neural networks, you typically have to work less hard at designing features,
but you end up with a harder learning problem. There is a human-machine tradeoff here.

Review: loss function

Loss(x, y,w):

-3 -2 -1 0 1 2 3

margin (w · φ(x))y

0

1

2

3

4

L
os

s(
x
,y
,w

)

(for binary classification)

TrainLoss(w) =
1

|Dtrain|
∑

(x,y)∈Dtrain

Loss(x, y,w)

Stochastic gradient descent:

w← w − η∇wLoss(x, y,w)

CS221 / Autumn 2019 / Liang & Sadigh 6

• The prediction score is the basis of many types of predictions, including regression and binary classification.
The loss function connects the prediction score with the correct output y, and measures how unhappy we
are with a particular weight vector w.

• This leads to an optimization problem, that of finding the w that yields the lowest training loss. We saw
that a simple algorithm, stochastic gradient descent, works quite well.

Question

What’s the true objective of machine learning?

minimize error on the training set

minimize training error with regularization

minimize error on the test set

minimize error on unseen future examples

learn about machines

CS221 / Autumn 2019 / Liang & Sadigh 8

• We have written the average training loss as the objective function, but it turns out that that’s not really
the true goal. That’s only what we tell our optimization friends so that there’s something concrete and
actionable. The true goal is to minimize error on unseen future examples; in other words, we need to
generalize. As we’ll see, this is perhaps the most important aspect of machine learning and statistics —
albeit a more elusive one.

Roadmap

Generalization

Unsupervised learning

Summary

CS221 / Autumn 2019 / Liang & Sadigh 10

Training error

TrainLoss(w) =
1

|Dtrain|
∑

(x,y)∈Dtrain

Loss(x, y,w)

Is this a good objective?

CS221 / Autumn 2019 / Liang & Sadigh 11

• Now let’s be a little more critical about what we’ve set out to optimize. So far, we’ve declared that we
want to minimize the training loss.

A strawman algorithm

Algorithm: rote learning

Training: just store Dtrain.

Predictor f(x):

If (x, y) ∈ Dtrain: return y.

Else: segfault.

Minimizes the objective perfectly (zero), but clearly bad...

CS221 / Autumn 2019 / Liang & Sadigh 13

• Clearly, machine learning can’t be about just minimizing the training loss. The rote learning algorithm does
a perfect job of that, and yet is clearly a bad idea. It overfits to the training data and doesn’t generalize
to unseen examples.

Overfitting pictures

Classification Regression

CS221 / Autumn 2019 / Liang & Sadigh 15

• Here are two pictures that illustrate what can go wrong if you only try to minimize the training loss for
binary classification and regression.

• On the left, we see that the green decision boundary gets zero training loss by separating all the blue
points from the red ones. However, the smoother and simpler black curve is intuitively more likely to be
the better classifier.

• On the right, we see that the predictor that goes through all the points will get zero training loss, but
intuitively, the black line is perhaps a better option.

• In both cases, what is happening is that by over-optimizing on the training set, we risk fitting noise in the
data.

Evaluation

Dtrain Learner f

How good is the predictor f?

Key idea: the real learning objective

Our goal is to minimize error on unseen future examples.

Don’t have unseen examples; next best thing:

Definition: test set

Test set Dtest contains examples not used for training.

CS221 / Autumn 2019 / Liang & Sadigh 17

• So what is the true objective then? Taking a step back, what we’re doing is building a system which
happens to use machine learning, and then we’re going to deploy it. What we really care about is how
accurate that system is on those unseen future inputs.

• Of course, we can’t access unseen future examples, so the next best thing is to create a test set. As
much as possible, we should treat the test set as a pristine thing that’s unseen and from the future. We
definitely should not tune our predictor based on the test error, because we wouldn’t be able to do that
on future examples.

• Of course at some point we have to run our algorithm on the test set, but just be aware that each time
this is done, the test set becomes less good of an indicator of how well you’re actually doing.

Generalization

When will a learning algorithm generalize well?

Dtrain Dtest

CS221 / Autumn 2019 / Liang & Sadigh 19

• So far, we have an intuitive feel for what overfitting is. How do we make this precise? In particular, when
does a learning algorithm generalize from the training set to the test set?

Approximation and estimation error

All predictors

f∗ Feature extraction

F

g

Learning

f̂

approx. error est. error

• Approximation error: how good is the hypothesis class?

• Estimation error: how good is the learned predictor relative to
the potential of the hypothesis class?

Err(f̂)− Err(g)︸ ︷︷ ︸
estimation

+Err(g)− Err(f∗)︸ ︷︷ ︸
approximation

CS221 / Autumn 2019 / Liang & Sadigh 21

• Here’s a cartoon that can help you understand the balance between fitting and generalization. Out
there somewhere, there is a magical predictor f∗ that classifies everything perfectly. This predictor is
unattainable; all we can hope to do is to use a combination of our domain knowledge and data to
approximate that. The question is: how far are we away from f∗?
• Recall that our learning framework consists of (i) choosing a hypothesis class F (by defining the feature

extractor) and then (ii) choosing a particular predictor f̂ from F .
• Approximation error is how far the entire hypothesis class is from the target predictor f∗. Larger

hypothesis classes have lower approximation error. Let g ∈ F be the best predictor in the hypothesis class
in the sense of minimizing test error g = argminf∈F Err(f). Here, distance is just the differences in test
error: Err(g)− Err(f∗).

• Estimation error is how good the predictor f̂ returned by the learning algorithm is with respect to the best
in the hypothesis class: Err(f̂) − Err(g). Larger hypothesis classes have higher estimation error because
it’s harder to find a good predictor based on limited data.

• We’d like both approximation and estimation errors to be small, but there’s a tradeoff here.

Effect of hypothesis class size

All predictors

f∗ Feature extraction

F

g

Learning

f̂

approx. error est. error

As the hypothesis class size increases...

Approximation error decreases because:

taking min over larger set

Estimation error increases because:

harder to estimate something more complex

How do we control the hypothesis class size?

CS221 / Autumn 2019 / Liang & Sadigh 23

• The approximation error decreases monotonically as the hypothesis class size increases for a simple reason:
you’re taking a minimum over a larger set.
• The estimation error increases monotonically as the hypothesis class size increases for a deeper reason

involving statistical learning theory (explained in CS229T).

• For each weight vector w, we have a predictor fw (for classification, fw(x) = w ·φ(x)). So the hypothesis
class F = {fw} is all the predictors as w ranges. By controlling the number of possible values of w that
the learning algorithm is allowed to choose from, we control the size of the hypothesis class and thus guard
against overfitting.

Strategy 1: dimensionality

w ∈ Rd

Reduce the dimensionality d:

CS221 / Autumn 2019 / Liang & Sadigh 25

• One straightforward strategy is to change the dimensionality, which is the number of features. For example,
linear functions are lower-dimensional than quadratic functions.

Controlling the dimensionality

Manual feature (template) selection:

• Add features if they help

• Remove features if they don’t help

Automatic feature selection (beyond the scope of this class):

• Forward selection

• Boosting

• L1 regularization

CS221 / Autumn 2019 / Liang & Sadigh 27

• Mathematically, you can think about removing a feature φ(x)37 as simply only allowing its corresponding
weight to be zero (w37 = 0).

• Operationally, if you have a few feature templates, then it’s probably easier to just manually include or
exclude them — this will give you more intuition.

• If you have a lot of individual features, you can apply more automatic methods for selecting features, but
these are beyond the scope of this class.

Strategy 2: norm

w ∈ Rd

Reduce the norm (length) ‖w‖:

[whiteboard: x 7→ w1x]

CS221 / Autumn 2019 / Liang & Sadigh 29

Controlling the norm

Regularized objective:

min
w

TrainLoss(w) +
λ

2
‖w‖2

Algorithm: gradient descent

Initialize w = [0, . . . , 0]

For t = 1, . . . , T :

w← w − η(∇w [TrainLoss(w)]+λw)

Same as gradient descent, except shrink the weights towards zero by λ.

CS221 / Autumn 2019 / Liang & Sadigh 30

• A related way to keep the weights small is called regularization, which involves adding an additional term
to the objective function which penalizes the norm (length) of w. This is probably the most common way
to control the norm.

• This form of regularization is also known as L2 regularization, or weight decay in deep learning literature.

• We can use gradient descent on this regularized objective, and this simply leads to an algorithm which
subtracts a scaled down version of w in each iteration. This has the effect of keeping w closer to the
origin than it otherwise would be.

• Note: Support Vector Machines are exactly hinge loss + regularization.

Controlling the norm: early stopping

Algorithm: gradient descent

Initialize w = [0, . . . , 0]

For t = 1, . . . , T :

w← w − η∇wTrainLoss(w)

Idea: simply make T smaller

Intuition: if have fewer updates, then ‖w‖ can’t get too big.

Lesson: try to minimize the training error, but don’t try too hard.

CS221 / Autumn 2019 / Liang & Sadigh 32

• A really cheap way to keep the weights small is to do early stopping. As we run more iterations of gradient
descent, the objective function improves. If we cared about the objective function, this would always be a
good thing. However, our true objective is not the training loss.

• Each time we update the weights, w has the potential of getting larger, so by running gradient descent a
fewer number of iterations, we are implicitly ensuring that w stays small.

• Though early stopping seems hacky, there is actually some theory behind it. And one paradoxical note is
that we can sometimes get better solutions by performing less computation.

Summary so far

Key idea: keep it simple

Try to minimize training error, but keep the hypothesis class small.

CS221 / Autumn 2019 / Liang & Sadigh 34

• We’ve seen several ways to control the size of the hypothesis class (and thus reducing variance) based on
either reducing the dimensionality or reducing the norm.

• It is important to note that what matters is the size of the hypothesis class, not how ”complex” the
predictors in the hypothesis class look. To put it another way, using complex features backed by 1000 lines
of code doesn’t hurt you if there are only 5 of them.

• Now the question is: how do we actually decide how big to make the hypothesis class, and in what ways
(which features)?

Hyperparameters

Definition: hyperparameters

Properties of the learning algorithm (features, regularization pa-
rameter λ, number of iterations T , step size η, etc.).

How do we choose hyperparameters?

Choose hyperparameters to minimize Dtrain error? No - solution would
be to include all features, set λ = 0, T → ∞.

Choose hyperparameters to minimize Dtest error? No - choosing based
on Dtest makes it an unreliable estimate of error!

CS221 / Autumn 2019 / Liang & Sadigh 36

Validation

Problem: can’t use test set!

Solution: randomly take out 10-50% of training data and use it instead
of the test set to estimate test error.

Dtrain\Dval Dval Dtest

Definition: validation set

A validation set is taken out of the training data which acts as a
surrogate for the test set.

CS221 / Autumn 2019 / Liang & Sadigh 37

• However, if we make the hypothesis class too small, then the approximation error gets too big. In practice,
how do we decide the appropriate size? Generally, our learning algorithm has multiple hyperparameters
to set. These hyperparameters cannot be set by the learning algorithm on the training data because we
would just choose a degenerate solution and overfit. On the other hand, we can’t use the test set either
because then we would spoil the test set.

• The solution is to invent something that looks like a test set. There’s no other data lying around, so we’ll
have to steal it from the training set. The resulting set is called the validation set.

• With this validation set, now we can simply try out a bunch of different hyperparameters and choose the
setting that yields the lowest error on the validation set. Which hyperparameter values should we try?
Generally, you should start by getting the right order of magnitude (e.g., λ = 0.0001, 0.001, 0.01, 0.1, 1, 10)
and then refining if necessary.

• In K-fold cross-validation, you divide the training set into K parts. Repeat K times: train on K − 1 of
the parts and use the other part as a validation set. You then get K validation errors, from which you can
report both the mean and the variance, which gives you more reliable information.

Development cycle

Problem: simplified named-entity recognition

Input: a string x (e.g., Governor [Gavin Newsom] in)

Output: y, whether x contains a person or not (e.g., +1)

Algorithm: recipe for success

• Split data into train, val, test

• Look at data to get intuition

• Repeat:

– Implement feature / tune hyperparameters

– Run learning algorithm

– Sanity check train and val error rates, weights

– Look at errors to brainstorm improvements

• Run on test set to get final error rates

[live solution]
CS221 / Autumn 2019 / Liang & Sadigh 39

• This slide represents the most important yet most overlooked part of machine learning: how to actually
apply it in practice.

• We have so far talked about the mathematical foundation of machine learning (loss functions and opti-
mization), and discussed some of the conceptual issues surrounding overfitting, generalization, and the
size of hypothesis classes. But what actually takes most of your time is not writing new algorithms, but
going through a development cycle, where you iteratively improve your system.

• Suppose you’re given a binary classification task (backed by a dataset). What is the process by which you
get to a working system? There are many ways to do this; here is one that I’ve found to be effective.

• The key is to stay connected with the data and the model, and have intuition about what’s going on. Make
sure to empirically examine the data before proceeding to the actual machine learning. It is imperative
to understand the nature of your data in order to understand the nature of your problem. (You might
even find that your problem admits a simple, clean solution sans machine learning.) Understanding trained
models can be hard sometimes, as machine learning algorithms (even linear classifiers) are often not the
easiest things to understand when you have thousands of parameters.

• First, maintain data hygiene. Hold out a test set from your data that you don’t look at until you’re done.
Start by looking at the data to get intuition. You can start to brainstorm what features / predictors you
will need. You can compute some basic statistics.

• Then you enter a loop: implement a new feature. There are three things to look at: error rates, weights,
and predictions. First, sanity check the error rates and weights to make sure you don’t have an obvious
bug. Then do an error analysis to see which examples your predictor is actually getting wrong. The art
of practical machine learning is turning these observations into new features.

• Finally, run your system once on the test set and report the number you get. If your test error is much
higher than your validation error, then you probably did too much tweaking and were overfitting (at a
meta-level) the validation set.

Roadmap

Generalization

Unsupervised learning

Summary

CS221 / Autumn 2019 / Liang & Sadigh 42

Supervision?

Supervised learning:

• Prediction: Dtrain contains input-output pairs (x, y)

• Fully-labeled data is very expensive to obtain (we can maybe get
thousands of labeled examples)

Unsupervised learning:

• Clustering: Dtrain only contains inputs x

• Unlabeled data is much cheaper to obtain (we can maybe get
billions of unlabeled examples)

CS221 / Autumn 2019 / Liang & Sadigh 43

• We have so far covered the basics of supervised learning. If you get a labeled training set of (x, y) pairs,
then you can train a predictor. However, where do these examples (x, y) come from? If you’re doing image
classification, someone has to sit down and label each image, and generally this tends to be expensive
enough that we can’t get that many examples.

• On the other hand, there are tons of unlabeled examples sitting around (e.g., Flickr for photos, Wikipedia,
news articles for text documents). The main question is whether we can harness all that unlabeled data
to help us make better predictions? This is the goal of unsupervised learning.

Word clustering

Input: raw text (100 million words of news articles)...

Output:

Cluster 1: Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends Sundays Saturdays

Cluster 2: June March July April January December October November September August

Cluster 3: water gas coal liquid acid sand carbon steam shale iron

Cluster 4: great big vast sudden mere sheer gigantic lifelong scant colossal

Cluster 5: man woman boy girl lawyer doctor guy farmer teacher citizen

Cluster 6: American Indian European Japanese German African Catholic Israeli Italian Arab

Cluster 7: pressure temperature permeability density porosity stress velocity viscosity gravity tension

Cluster 8: mother wife father son husband brother daughter sister boss uncle

Cluster 9: machine device controller processor CPU printer spindle subsystem compiler plotter

Cluster 10: John George James Bob Robert Paul William Jim David Mike

Cluster 11: anyone someone anybody somebody

Cluster 12: feet miles pounds degrees inches barrels tons acres meters bytes

Cluster 13: director chief professor commissioner commander treasurer founder superintendent dean custodian

Cluster 14: had hadn’t hath would’ve could’ve should’ve must’ve might’ve

Cluster 15: head body hands eyes voice arm seat eye hair mouth

[Brown et al, 1992]

CS221 / Autumn 2019 / Liang & Sadigh 45

• Empirically, unsupervised learning has produced some pretty impressive results. HMMs (more specifically,
Brown clustering) can be used to take a ton of raw text and cluster related words together.

• It is important to note that no one told the algorithm what days of the week were or months or family re-
lations. The clustering algorithm discovered this structure automatically by simply examining the statistics
of raw text.

Word vectors
[Mikolov et al., 2013]

CS221 / Autumn 2019 / Liang & Sadigh 47

• A related idea are word vectors, which became popular after Tomas Mikolov created word2vec in 2013
(though the idea of vector space representations had been around for a while).

• Instead of representing a word by discrete clusters, a word is represented by a vector, which gives us a
notion of similarity between words.

• More recently, contextualized word representations such as ELMo, BERT, XLNet, ALBERT, etc. have
been very impactful. These methods also are unsupervised in that they only require raw text as input, but
they produce representations of words in context. These representations essentially serve as good features
for any NLP task, and empirically these methods have resulted in significant gains.

Clustering with deep embeddings
[Xie et al., 2015]

CS221 / Autumn 2019 / Liang & Sadigh 49

• In an example from vision, one can learn a feature representation (embedding) for images along with a
clustering of them.

Key idea: unsupervised learning

Data has lots of rich latent structures; want methods to discover
this structure automatically.

CS221 / Autumn 2019 / Liang & Sadigh 51

• Unsupervised learning in some sense is the holy grail: you don’t have to tell the machine anything —
it just ”figures it out.” However, one must not be overly optimistic here: there is no free lunch. You
ultimately still have to tell the algorithm something, at least in the way you define the features or set up
the optimization problem.

Types of unsupervised learning

Clustering (e.g., K-means):

Dimensionality reduction (e.g., PCA):

CS221 / Autumn 2019 / Liang & Sadigh 53

• There are many forms of unsupervised learning, corresponding to different types of latent structures you
want to pull out of your data. In this class, we will focus on one of them: clustering.

Clustering

Definition: clustering

Input: training set of input points

Dtrain = {x1, . . . , xn}
Output: assignment of each point to a cluster

[z1, . . . , zn] where zi ∈ {1, . . . ,K}

Intuition: Want similar points to be in same cluster, dissimilar points to
be in different clusters

[whiteboard]

CS221 / Autumn 2019 / Liang & Sadigh 55

• The task of clustering is to take a set of points as input and return a partitioning of the points into K
clusters. We will represent the partitioning using an assignment vector z = [z1, . . . , zn]. For each i,
zi ∈ {1, . . . ,K} specifies which of the K clusters point i is assigned to.

K-means objective

Setup:

• Each cluster k = 1, . . . ,K is represented by a centroid µk ∈ Rd

• Intuition: want each point φ(xi) close to its assigned centroid µzi

Objective function:

Losskmeans(z, µ) =
n∑

i=1

‖φ(xi)− µzi‖2

Need to choose centroids µ and assignments z jointly

CS221 / Autumn 2019 / Liang & Sadigh 57

• K-means is a particular method for performing clustering which is based on associating each cluster with
a centroid µk for k = 1, . . . ,K. The intuition is to assign the points to clusters and place the centroid
for each cluster so that each point φ(xi) is close to its assigned centroid µzi .

K-means: simple example

Example: one-dimensional

Input: Dtrain = {0, 2, 10, 12}
Output: K = 2 centroids µ1, µ2 ∈ R

If know centroids µ1 = 1, µ2 = 11:

z1 = argmin{(0− 1)2, (0− 11)2} = 1

z2 = argmin{(2− 1)2, (2− 11)2} = 1

z3 = argmin{(10− 1)2, (10− 11)2} = 2

z4 = argmin{(12− 1)2, (12− 11)2} = 2

If know assignments z1 = z2 = 1, z3 = z4 = 2:

µ1 = argminµ(0− µ)2 + (2− µ)2 = 1

µ2 = argminµ(10− µ)2 + (12− µ)2 = 11

CS221 / Autumn 2019 / Liang & Sadigh 59

• How do we solve this optimization problem? We can’t just use gradient descent because there are discrete
variables (assignment variables zi). We can’t really use dynamic programming because there are continuous
variables (the centroids µk).

• To motivate the solution, consider a simple example with four points. As always, let’s try to break up the
problem into subproblems.

• What if we knew the optimal centroids? Then computing the assignment vectors is trivial (for each point,
choose the closest center).

• What if we knew the optimal assignments? Then computing the centroids is also trivial (one can check
that this is just averaging the points assigned to that center).

• The only problem is that we don’t know the optimal centroids or assignments, and unlike in dynamic
programming, the two depend on one another cyclically.

K-means algorithm

min
z

min
µ

Losskmeans(z, µ)

Key idea: alternating minimization

Tackle hard problem by solving two easy problems.

CS221 / Autumn 2019 / Liang & Sadigh 61

• And now the leap of faith is this: start with an arbitrary setting of the centroids (not optimal). Then
alternate between choosing the best assignments given the centroids, and choosing the best centroids given
the assignments. This is the K-means algorithm.

K-means algorithm (Step 1)

Goal: given centroids µ1, . . . , µK , assign each point to the best centroid.

Algorithm: Step 1 of K-means

For each point i = 1, . . . , n:

Assign i to cluster with closest centroid:

zi ← arg min
k=1,...,K

‖φ(xi)− µk‖2.

CS221 / Autumn 2019 / Liang & Sadigh 63

• Step 1 of K-means fixes the centroids. Then we can optimize the K-means objective with respect to z
alone quite easily. It is easy to show that the best label for zi is the cluster k that minimizes the distance
to the centroid µk (which is fixed).

K-means algorithm (Step 2)

Goal: given cluster assignments z1, . . . , zn, find the best centroids
µ1, . . . , µK .

Algorithm: Step 2 of K-means

For each cluster k = 1, . . . ,K:

Set µk to average of points assigned to cluster k:

µk ←
1

|{i : zi = k}|
∑

i:zi=k

φ(xi)

CS221 / Autumn 2019 / Liang & Sadigh 65

• Now, turning things around, let’s suppose we knew what the assignments z were. We can again look at
the K-means objective function and try to optimize it with respect to the centroids µ. The best µk is to
place the centroid at the average of all the points assigned to cluster k; this is step two.

K-means algorithm

Objective:

min
z

min
µ

Losskmeans(z, µ)

Algorithm: K-means

Initialize µ1, . . . , µK randomly.

For t = 1, . . . , T :

Step 1: set assignments z given µ

Step 2: set centroids µ given z

[demo]

CS221 / Autumn 2019 / Liang & Sadigh 67

• Now we have the two ingredients to state the full K-means algorithm. We start by initializing all the
centroids randomly. Then, we iteratively alternate back and forth between steps 1 and 2, optimizing z
given µ and vice-versa.

K-means: simple example

Example: one-dimensional

Input: Dtrain = {0, 2, 10, 12}
Output: K = 2 centroids µ1, µ2 ∈ R

Initialization (random): µ1 = 0, µ2 = 2

Iteration 1:

• Step 1: z1 = 1, z2 = 2, z3 = 2, z4 = 2

• Step 2: µ1 = 0, µ2 = 8

Iteration 2:

• Step 1: z1 = 1, z2 = 1, z3 = 2, z4 = 2

• Step 2: µ1 = 1, µ2 = 11

CS221 / Autumn 2019 / Liang & Sadigh 69

• Here is an example of an execution of K-means where we converged to the correct answer.

Local minima

K-means is guaranteed to converge to a local minimum, but is not guar-
anteed to find the global minimum.

[demo: getting stuck in local optima, seed = 100]

Solutions:

• Run multiple times from different random initializations

• Initialize with a heuristic (K-means++)

CS221 / Autumn 2019 / Liang & Sadigh 71

• K-means is guaranteed to decrease the loss function each iteration and will converge to a local minimum,
but it is not guaranteed to find the global minimum, so one must exercise caution when applying K-means.

• One solution is to simply run K-means several times from multiple random initializations and then choose
the solution that has the lowest loss.

• Or we could try to be smarter in how we initialize K-means. K-means++ is an initialization scheme which
places centroids on training points so that these centroids tend to be distant from one another.

Unsupervised learning summary

• Leverage tons of unlabeled data

• Difficult optimization:

latent variables z parameters µ

CS221 / Autumn 2019 / Liang & Sadigh 73

Roadmap

Generalization

Unsupervised learning

Summary

CS221 / Autumn 2019 / Liang & Sadigh 74

Summary

• Feature extraction (think hypothesis classes) [modeling]

• Prediction (linear, neural network, k-means) [modeling]

• Loss functions (compute gradients) [modeling]

• Optimization (stochastic gradient, alternating minimization)
[learning]

• Generalization (think development cycle) [modeling]

CS221 / Autumn 2019 / Liang & Sadigh 75

• This concludes our tour of the foundations of machine learning, although machine learning will come up
again later in the course. You should have gotten more than just a few isolated equations and algorithms.
It is really important to think about the overarching principles in a modular way.

• First, feature extraction is where you put your domain knowledge into. In designing features, it’s useful to
think in terms of the induced hypothesis classes — what kind of functions can your learning algorithm
potentially learn?

• These features then drive prediction: either linearly or through a neural network. We can even think of
k-means as trying to predict the data points using the centroids.

• Loss functions connect predictions with the actual training examples.

• Note that all of the design decisions up to this point are about modeling. Algorithms are very important,
but only come in once we have the right optimization problem to solve.

• Finally, machine learning requires a leap of faith. How does optimizing anything at training time help you
generalize to new unseen examples at test time? Learning can only work when there’s a common core
that cuts past all the idiosyncrasies of the examples. This is exactly what features are meant to capture.

A brief history

1795: Gauss proposed least squares (astronomy)

1940s: logistic regression (statistics)

1952: Arthur Samuel built program that learned to play checkers (AI)

1957: Rosenblatt invented Perceptron algorithm (like SGD)

1969: Minsky and Papert ”killed” machine learning

1980s: neural networks (backpropagation, from 1960s)

1990: interface with optimization/statistics, SVMs

2000s-: structured prediction, revival of neural networks, etc.

CS221 / Autumn 2019 / Liang & Sadigh 77

• Many of the ideas surrounding fitting functions was known in other fields long before computers, let alone
AI.

• When computers arrived on the scene, learning was definitely on people’s radar, although this was detached
from the theoretical, statistical and optimization foundations.

• In 1969, Minsky and Papert wrote a famous book Perceptrons, which showed the limitations of linear
classifiers with the famous XOR example (similar to our car collision example), which killed off this type
of research. AI largely turned to symbolic methods.

• Since the 1980s, machine learning has increased its role in AI, been placed on a more solid mathematical
foundation with its connection with optimization and statistics.

• While there is a lot of optimism today about the potential of machine learning, there are still a lot of
unsolved problems.

Challenges

Capabilities:

• More complex prediction problems (translation, generation)

• Unsupervised learning: automatically discover structure

Responsibilities:

• Feedback loops: predictions affect user behavior, which generates
data

• Fairness: build classifiers that don’t discriminate?

• Privacy: can we pool data together

• Interpretability: can we understand what algorithms are doing?

CS221 / Autumn 2019 / Liang & Sadigh 79

• Going ahead, one major thrust is to improve the capabilities of machine learning. Broadly construed,
machine learning is about learning predictors from some input to some output. The simplest case is when
the output is just a label, but increasingly, researchers have been using the same machine learning tools for
doing translation (output is a sentence), speech synthesis (output is a waveform), and image generation
(output is an image).

• Another important direction is being able to leverage the large amounts of unlabeled data to learn good
representations. Can we automatically discover the underlying structure (e.g., a 3D model of the world
from videos)? Can we learn a causal model of the world? How can we make sure that the representations
we are learning are useful for some other task?

• A second major thrust has to do with the context in which machine learning is now routinely being applied,
for example in high-stakes scenarios such as self-driving cars. But machine learning does not exist in a
vacuum. When machine learning systems are deployed to real users, it changes user behavior, and since
the same systems are being trained on this user-generated data, this results in feedback loops.

• We also want to build ML systems which are fair. The real world is not fair; thus the data generated from
it will reflect these discriminatory biases. Can we overcome these biases?

• The strength of machine learning lies in being able to aggregate information across many individuals.
However, this appears to require a central organization that collects all this data, which seems like poor
practice from the point of view of protecting privacy. Can we perform machine learning while protecting
individual privacy? For example, local differential privacy mechanisms inject noise into an individual’s
measurement before sending it to the central server.

• Finally, there is the issue of trust of machine learning systems in high-stakes situations. As these systems
become more complex, it becomes harder for humans to ”understand” how and why a system is making
a particular decision.

Machine learning

Key idea: learning

Programs should improve with experience.

So far: reflex-based models

Next time: state-based models

CS221 / Autumn 2019 / Liang & Sadigh 81

• If we generalize for a moment, machine learning is really about programs that can improve with experience.

• So far, we have only focused on reflex-based models where the program only outputs a yes/no or a number,
and the experience is examples of input-output pairs.

• Next time, we will start looking at models which can perform higher-level reasoning, but machine learning
will remain our companion for the remainder of the class.

