
Landing, Gracefully
Pouya Rezazadeh / Kongphap Wongpattanukul / Dong Hee Song

CS221, Artificial Intelligence: Principles and Techniques (Fall 2019) Stanford University

Introduction

Model: LunarLander-v2

Methodology

References

● The lander maneuvers by engaging thrusters (with a noisy

outcome) and consuming fuel

● State has 8 components:

○ horizontal and vertical position, horizontal and vertical

velocity, angle and angular velocity, and left and right leg

contact

● Control agent can take four actions

○ (i) do nothing, (ii) fire main engine (push up), (iii) fire left

engine (push right), and (iv) fire right engine (push left)

● Vehicle starts from the top of the screen (with random initial
velocity) and landing pad is always at coordinates (0,0)

● Each simulation episode finishes if the lander crashes or comes to
rest, receiving additional -100 or +100 points. Each leg ground
contact is +10. Firing main engine is -0.3 points each frame. Firing
side engine is -0.03 points each frame. Solved is 200 points.

1. G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba, “Openai

gym,” arXiv preprint arXiv:1606.01540, 2016

2. www.openaccessgovernment.org/

3. internetofbusiness.com/ge-commercial-drone-detect-gas-leaks/

4. www.theverge.com/2018/12/5/

5. Mao, Hongzi, et al. "Resource management with deep reinforcement learning." Proceedings of the 15th

ACM Workshop on Hot Topics in Networks. ACM, 2016.

Q-Learning
● Autonomous drones and rockets have a spectrum of applications

from urban transportation and reusable rockets to drug delivery
and fugitive methane leak detection

● Effective control systems are needed, especially for challenging
tasks of landing and takeoff

● This project applies AI to drone maneuvering using LunarLander-
v2 simulation environment from OpenAI Gym [1]

● The objective is to land the vehicle on the target fast, safely, and
efficiently. We use reinforcement learning, in particular Q-
Learning, to train an agent to achieve this goal.

Hyper-Parameters

Results and Discussion

Earth

Engineering

2. Deep Q-Learning with Neural Networks

1. Linear Function Appx.

Output

Layer

Input

Layer

Hidden

Layer

[2],[3],[4]

• # training examples

• # epochs

• Batch size (experience

replay)

• Dropout rate

• Learning rate

• Weight decay

• lambda scaling

• Maximum moves

• Initial exploration

probability

• Minimum exploration

probability

• Exploration probability

decay

● Agent trained with Deep Q-Learning (DQL) with experience

replay can consistently land the lunar lander

● DQL agent consistently outperforms the baseline

● DQL with experience replay shows strong potential for training

optimal control agents for planetary vehicles

Case Name Algorithm Score
(1000 run avg)

Baseline Heuristic Control -87.21

Features rounded to 0-decimal places Linear Function Appx -29.46

Features rounded to 1-decimal place Linear Function Appx -7.14

DNN without Memory Replay Deep Q-Learning 35.8

DNN with Memory Replay Deep Q-Learning 212.82

Q-learning: model-free RL algorithm; estimates optimum policy (𝜋𝑜𝑝𝑡). Optimum Q-value (෠𝑄𝑜𝑝𝑡)

estimated using the state and action:

෠𝑄𝑜𝑝𝑡 𝑠, 𝑎 = 𝑓 𝑠, 𝑎
Given a sequence (state (𝑠), action (𝑎), reward (𝑟), new state (𝑠′)), want to achieve optimal Q-value:

discounted future reward given optimal policy:

෠𝑄𝑜𝑝𝑡 ≈ 𝑟 + 𝛾 max
𝑎

෠𝑄 𝑠′, 𝑎

Linear models were used to estimate the optimum Q-value (෠𝑄𝑜𝑝𝑡) .

෠𝑄𝑜𝑝𝑡 𝑠, 𝑎 = 𝑤 ⋅ 𝜙 𝑠, 𝑎
where 𝑤 is the sparse weight vector and 𝜙 𝑠, 𝑎 is the feature vector. Our feature vector (𝜙) is based on

applying indicator function to the discretized state values (i.e. positions, angle, and velocities) and actions.

Each continuous state variable is rounded to its nearest decimal place e.g. zero decimal place or first

decimal place. Our discretization scheme is defined as:

𝜙𝑖 = ቊ
1 𝑠 = 𝑠𝑖 , 𝑎 = 𝑎𝑖 , round down

1 𝑠 = 𝑠𝑖 , 𝑎 = 𝑎𝑖 , round up
where 𝑠 is the current state variable, 𝑎 is the selected action, 𝑠𝑖 is all possible discretize state variable

values, and 𝑎𝑖 is all possible actions. 𝑠 could be single state variable or a combination of them e.g. position,

a tuple of angle and angular velocity, etc.

Neural Networks were used to better estimate the optimum Q-value (෠𝑄𝑜𝑝𝑡)

ℎ𝑖 = 𝑓 𝑤𝑖 ⋅ ℎ𝑖−1
෠𝑄𝑜𝑝𝑡 𝑠, 𝑎 = 𝑤𝑛 ⋅ ℎ𝑛

where 𝑤𝑖 is the weight of hidden layer 𝑖, ℎ𝑖 is the output value of hidden layer 𝑖, and 𝑓 𝑧 is an activation

function. Note that the input layer is corresponded to the number of states and the output layer is

corresponded to the number of actions.

• Network: consisted of 8 inputs, 2 hidden layers and 4

outputs (8, 150/ReLU,120/ReLU, 4/Linear)

• Optimizer: ADAM

• Loss function: mean squared error

• Experience replay*: used to stabilize algorithm and

enhance efficiency

Loss function for this regression problem (mean

squared loss):

𝑀𝑆𝐸 =
1

𝑁
෍

𝑖

(𝑦𝑖−ො𝑦𝑖)
2

Exploration of algorithm: determined by epsilon

greedy policy
[5]

* Technique storing observed (s,a,r,s’) in memory, and sampling them to create a batch for the neural network.

Fig 4. Score vs. number of iterations for best performing deep Q-
learning algorithm

Fig 3. Sample Deep Neural Network

Fig 2. Deep Q-Learning

Fig 1. Urban Air Transport (left), Methane Leak Detection (center),
Autonomous Rockets (right)

Fig 5. Landing using Baseline vs Oracle vs Deep-Q-Learning Model

https://www.openaccessgovernment.org/
https://internetofbusiness.com/ge-commercial-drone-detect-gas-leaks/
http://www.theverge.com/2018/12/5/

