
MDPs: epsilon-greedy





Exploration

Algorithm: reinforcement learning template

For t = 1, 2, 3, . . .

Choose action at = πact(st−1) (how?)

Receive reward rt and observe new state st

Update parameters (how?)

s0; a1, r1, s1; a2, r2, s2; a3, r3, s3; . . . ; an, rn, sn

Which exploration policy πact to use?

CS221 2



• We have so far given many algorithms for updating parameters (i.e., Q̂π(s, a) or Q̂opt(s, a)). If we were doing supervised learning, we’d be
done, but in reinforcement learning, we need to actually determine our exploration policy πact to collect data for learning. Recall that we
need to somehow make sure we get information about each (s, a).

• We will discuss two complementary ways to get this information: (i) explicitly explore (s, a) or (ii) explore (s, a) implicitly by actually exploring
(s′, a′) with similar features and generalizing.

• These two ideas apply to many RL algorithms, but let us specialize to Q-learning.



No exploration, all exploitation

Attempt 1: Set πact(s) = arg max
a∈Actions(s)

Q̂opt(s, a)

Run (or press ctrl-enter)

0

0

00

0

0

00 -50 100

0

2

00.5

0

0

00 -50
0

0

00

2
0

0

00

0

0

00

0

0

00

Average (lifetime) utility: 2

a r s

(2,1)

S 2 (3,1)

Problem: Q̂opt(s, a) estimates are inaccurate, too greedy!

CS221 4



• The naive solution is to explore using the optimal policy according to the estimated Q-value Q̂opt(s, a).

• But this fails horribly. In the example, once the agent discovers that there is a reward of 2 to be gotten by going south that becomes its
optimal policy and it will not try any other action. The problem is that the agent is being too greedy.

• In the demo, if multiple actions have the same maximum Q-value, we choose randomly. Try clicking ”Run” a few times, and you’ll end up
with minor variations.

• Even if you increase numEpisodes to 10000, nothing new gets learned.



No exploitation, all exploration

Attempt 2: Set πact(s) = random from Actions(s)

Run (or press ctrl-enter)

92.9

93

92.392.8

92.2

93.3

-5092.2 -50 100

92.9

2

93.593.3

92.9

93.6

-5092.7 -50
96.9

65.3

59.4-49.2

2
91.7

92.1

93.92

-50

88.4

94.492.6

94.5

93.5

89.493.8

Average (lifetime) utility: -17.11

a r s

(2,1)

S 2 (3,1)

Problem: average utility is low because exploration is not guided

CS221 6



• We can go to the other extreme and use an exploration policy that always chooses a random action. It will do a much better job of exploration,
but it doesn’t exploit what it learns and ends up with a very low utility.

• It is interesting to note that the value (average over utilities across all the episodes) can be quite small and yet the Q-values can be quite
accurate. Recall that this is possible because Q-learning is an off-policy algorithm.



Exploration/exploitation tradeoff

Key idea: balance

Need to balance exploration and exploitation.

Examples from life: restaurants, routes, research

CS221 8





Epsilon-greedy

Algorithm: epsilon-greedy policy

πact(s) =

{
argmaxa∈Actions Q̂opt(s, a) probability 1− ε,

random from Actions(s) probability ε.

Run (or press ctrl-enter)

100

100

100100

100

100

-5099.8 -50 100

100

2

100100

100

100

-50100 -50
100

100

100-50

2
100

100

1002

-50

100

100100

100

100

100100

Average (lifetime) utility: 31.75

a r s

(2,1)

E 0 (2,2)

S 0 (3,2)

E 0 (3,3)

E 0 (3,4)

N 0 (2,4)

N 100 (1,4)

CS221 10



• The natural thing to do when you have two extremes is to interpolate between the two. The result is the epsilon-greedy algorithm which
explores with probability ε and exploits with probability 1− ε.

• It is natural to let ε decrease over time. When you’re young, you want to explore a lot (ε = 1). After a certain point, when you feel like
you’ve seen all there is to see, then you start exploiting (ε = 0).

• For example, we let ε = 1 for the first third of the episodes, ε = 0.5 for the second third, and ε = 0 for the final third. This is not the optimal
schedule. Try playing around with other schedules to see if you can do better.


