Course plan

- Search problems
- Markov decision processes
- Adversarial games
- Constraint satisfaction problems
- Markov networks
- Bayesian networks

Reflex States Variables Logic

"Low-level intelligence" "High-level intelligence"

Machine learning
Variable-based models

Special cases:

- Constraint satisfaction problems
- Markov networks
- Bayesian networks

Key idea: variables

- Solutions to problems ⇒ assignments to variables (modeling).
- Decisions about variable ordering, etc. chosen by inference.

Higher-level modeling language than state-based models
Definition: factor graph

Variables:

\[X = (X_1, \ldots, X_n), \text{ where } X_i \in \text{Domain}_i \]

Factors:

\[f_1, \ldots, f_m, \text{ with each } f_j(X) \geq 0 \]
Example: map coloring

Variables:

\[X = (\text{WA}, \text{NT}, \text{SA}, \text{Q}, \text{NSW}, \text{V}, \text{T}) \]

Domain: \(i \in \{\text{R, G, B}\} \)

Factors:

\[f_1(X) = [\text{WA} \neq \text{NT}] \]
\[f_2(X) = [\text{NT} \neq \text{Q}] \]

...
Factors

Definition: scope and arity

Scope of a factor f_j: set of variables it depends on.

Arity of f_j is the number of variables in the scope.

Unary factors (arity 1); **Binary** factors (arity 2).

Constraints are factors that return 0 or 1.

Example: map coloring

Scope of $f_1(X) = \lbrack \text{WA}\neq\text{NT} \rbrack$ is $\{\text{WA, NT}\}$

f_1 is a binary constraint
Assignment weights

Definition: assignment weight

Each assignment $x = (x_1, \ldots, x_n)$ has a weight:

$$\text{Weight}(x) = \prod_{j=1}^{m} f_j(x)$$

An assignment is **consistent** if $\text{Weight}(x) > 0$.

Objective: find the maximum weight assignment

$$\arg \max_x \text{Weight}(x)$$

A CSP is **satisfiable** if $\max_x \text{Weight}(x) > 0$.
Variables, factors: specify locally

\[
\text{Weight}\left(\{X_1 : B, X_2 : B, X_3 : R\}\right) = 1 \cdot 1 \cdot 2 \cdot 2 = 4
\]

Assignments, weights: optimize globally
Example: object tracking

Problem: object tracking

(O) Noisy sensors report positions: 0, 2, 2.

(T) Objects can’t teleport.

What trajectory did the object take?
Example: object tracking CSP

Factor graph:

- Variables $X_i \in \{0, 1, 2\}$: position of object at time i
- Observation factors $o_i(x_i)$: noisy information compatible with position
- Transition factors $t_i(x_i, x_{i+1})$: object positions can’t change too much
Summary

- Decide on variables and domains

- Translate each desideratum into a set of factors

- Try to keep CSP small (variables, factors, domains, arities)

- When implementing each factor, think in terms of checking a solution rather than computing the solution
Backtracking search

Algorithm: backtracking search

Backtrack($x, w, \text{Domains}$):

- If x is complete assignment: update best and return
- Choose unassigned **VARIABLE** X_i
- Order **VALUES** Domain_i of chosen X_i
- For each value v in that order:
 - $\delta \leftarrow \prod_{f_j \in D(x, X_i)} f_j(x \cup \{X_i : v\})$
 - If $\delta = 0$: continue
 - **Domains’** \leftarrow Domains via **LOOKAHEAD**
 - If any **Domains’$_i$** is empty: continue
 - Backtrack($x \cup \{X_i : v\}, w, \delta, \text{Domains’}$)
Partial assignment weights

Idea: compute weight of partial assignment as we go
Dependent factors

- Partial assignment (e.g., $x = \{\text{WA} : \text{R}, \text{NT} : \text{G}\}$)

Definition: dependent factors

Let $D(x, X_i)$ be set of factors depending on X_i and x but not on unassigned variables.

$$D(\{\text{WA} : \text{R}, \text{NT} : \text{G}\}, \text{SA}) = \{[\text{WA} \neq \text{SA}], [\text{NT} \neq \text{SA}]\}$$
Lookahead: forward checking

Key idea: forward checking (one-step lookahead)

- After assigning a variable X_i, eliminate inconsistent values from the domains of X_i’s neighbors.
- If any domain becomes empty, return.
Choosing an unassigned variable

Which variable to assign next?

Key idea: most constrained variable
Choose variable that has the smallest domain.

This example: SA (has only one value)
Ordering values of a selected variable

What values to try for Q?

- WA
- NT
- SA
- Q
- NSW
- V
- T

2 + 2 + 2 = 6 consistent values

1 + 1 + 2 = 4 consistent values

Key idea: least constrained value

Order values of selected X_i by decreasing number of consistent values of neighboring variables.
When to fail?

Most constrained variable (MCV):

- Must assign every variable
- If going to fail, fail early \Rightarrow more pruning

Least constrained value (LCV):

- Need to choose some value
- Choose value that is most likely to lead to solution
When do these heuristics help?

- **Most constrained variable**: useful when **some** factors are constraints (can prune assignments with weight 0)

 \[x_1 = x_2 \] \hspace{1cm} \[x_2 \neq x_3 \] + 2

- **Least constrained value**: useful when **all** factors are constraints (all assignment weights are 1 or 0)

 \[x_1 = x_2 \] \hspace{1cm} \[x_2 \neq x_3 \]

- **Forward checking**: needed to prune domains to make heuristics useful!
Definition: arc consistency

A variable X_i is arc consistent with respect to X_j if for each $x_i \in \text{Domain}_i$, there exists $x_j \in \text{Domain}_j$ such that $f(\{X_i : x_i, X_j : x_j\}) \neq 0$ for all factors f whose scope contains X_i and X_j.

Algorithm: enforce arc consistency

EnforceArcConsistency(X_i, X_j): Remove values from Domain$_i$ to make X_i arc consistent with respect to X_j.
AC-3

Forward checking: when assign $X_j : x_j$, set $\text{Domain}_j = \{x_j\}$ and enforce arc consistency on all neighbors X_i with respect to X_j

AC-3: repeatedly enforce arc consistency on all variables

Algorithm: AC-3

$$S \leftarrow \{X_j\}.$$

While S is non-empty:

Remove any X_j from S.

For all neighbors X_i of X_j:

Enforce arc consistency on X_i w.r.t. X_j.

If Domain$_i$ changed, add X_i to S.

Diagram:

- **X_j**
- **X_i**
Limitations of AC-3

- AC-3 isn’t always effective:

- No consistent assignments, but AC-3 doesn’t detect a problem!

- Intuition: if we look locally at the graph, nothing blatantly wrong...
Backtracking search
Greedy search
Beam search

Beam size $K = 4$
Beam search

Idea: keep $\leq K$ candidate list C of partial assignments

Algorithm: beam search

Initialize $C \leftarrow \{\}\}$

For each $i = 1, \ldots, n$:

 Extend:

 $C' \leftarrow \{x \cup \{X_i : v\} : x \in C, v \in \text{Domain}_i\}$

 Prune:

 $C \leftarrow K$ elements of C' with highest weights

Not guaranteed to find maximum weight assignment!

[demo: beamSearch({K:3})]
Summary

- Beam size K controls tradeoff between efficiency and accuracy
 - $K = 1$ is greedy search ($O(nb)$ time)
 - $K = \infty$ is BFS ($O(b^n)$ time)

Backtracking search : DFS :: beam search : pruned BFS
Search strategies

Backtracking/beam search: extend partial assignments

Local search: modify complete assignments
Example: object tracking

\begin{align*}
\text{position } X_i & \quad \text{time } i \\
0 & \quad 1 & \quad 2 & \quad 3 & \quad 4 \\
0 & \quad 1 & \quad 2 & \quad 3 & \quad 4 \\
\end{align*}

\begin{align*}
X_1 \quad t_1 & \quad X_2 \quad t_2 & \quad X_3 \\
\square o_1 & \quad 0 & \quad 2 \\
\square o_2 & \quad 1 & \quad 1 \\
\square o_3 & \quad 2 & \quad 2 \\
\end{align*}

\begin{align*}
x_1 \quad o_1(x_1) & \quad x_2 \quad o_2(x_2) & \quad x_3 \quad o_3(x_3) & \quad |x_i - x_{i+1}| \quad t_i(x_i, x_{i+1}) \\
0 & \quad 0 & \quad 0 & \quad 0 & \quad 2 \\
1 & \quad 0 & \quad 1 & \quad 1 & \quad 1 \\
2 & \quad 2 & \quad 2 & \quad 2 & \quad 2 \\
\end{align*}

\[\text{[demo]}\]
One small step

Old assignment: \((0, 0, 1)\); how to improve?

\[
\begin{align*}
(x_1, v, x_3) & \quad \text{weight} \\
(0, 0, 1) & \quad 2 \cdot 2 \cdot 0 \cdot 1 \cdot 1 = 0 \\
(0, 1, 1) & \quad 2 \cdot 1 \cdot 1 \cdot 2 \cdot 1 = 4 \\
(0, 2, 1) & \quad 2 \cdot 0 \cdot 2 \cdot 1 \cdot 1 = 0
\end{align*}
\]

New assignment: \((0, 1, 1)\)
Exploiting locality

Weight of new assignment \((x_1, v, x_3)\):

\[
o_1(x_1)t_1(x_1, v)o_2(v)t_2(v, x_3)o_3(x_3)
\]

Key idea: locality

When evaluating possible re-assignments to \(X_i\), only need to consider the factors that depend on \(X_i\).
Iterated conditional modes (ICM)

Algorithm: iterated conditional modes (ICM)

- Initialize x to a random complete assignment
- Loop through $i = 1, \ldots, n$ until convergence:
 - Compute weight of $x_v = x \cup \{X_i : v\}$ for each v
 - $x \leftarrow x_v$ with highest weight

![Diagram](image)

[demo: iteratedConditionalModes()]
Convergence properties

• Weight(x) increases or stays the same each iteration
• Converges in a finite number of iterations
• Can get stuck in local optima
• Not guaranteed to find optimal assignment!
Summary

Algorithm	Strategy	Optimality	Time complexity
Backtracking search | extend partial assignments | exact | exponential |
Beam search | extend partial assignments | approximate | linear |
Local search (ICM) | modify complete assignments | approximate | linear |
Course plan

- Reflex
 - Search problems
 - Markov decision processes
 - Adversarial games

- States
 - "Low-level intelligence"

- Variables
 - Markov networks
 - Constraint satisfaction problems
 - Bayesian networks

- Logic
 - "High-level intelligence"

Machine learning
Definition

Definition: Markov network

A Markov network is a factor graph which defines a joint distribution over random variables \(X = (X_1, \ldots, X_n) \):

\[
P(X = x) = \frac{\text{Weight}(x)}{Z}
\]

where \(Z = \sum_{x'} \text{Weight}(x') \) is the normalization constant.

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>Weight((x))</th>
<th>(P(X = x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0.15</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>0.15</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0.15</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>0.15</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0.08</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>0.31</td>
</tr>
</tbody>
</table>

\[
Z = 4 + 4 + 4 + 4 + 2 + 8 = 26
\]

Represents uncertainty!
Marginal probabilities

Example question: where was the object at time step 2 (X_2)?

Definition: Marginal probability

The marginal probability of $X_i = v$ is given by:

$$\mathbb{P}(X_i = v) = \sum_{x:x_i=v} \mathbb{P}(X = x)$$

Object tracking example:

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>Weight(x)</th>
<th>$\mathbb{P}(X = x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0.15</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>0.15</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0.15</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>0.15</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0.08</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>0.31</td>
</tr>
</tbody>
</table>

$\mathbb{P}(X_2 = 1) = 0.15 + 0.15 + 0.15 + 0.15 = 0.62$

$\mathbb{P}(X_2 = 2) = 0.08 + 0.31 = 0.38$

Note: different than max weight assignment!
Summary

Markov networks = factor graphs + probability

- Normalize weights to get probability distribution
- Can compute marginal probabilities to focus on variables

<table>
<thead>
<tr>
<th>CSPs</th>
<th>Markov networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>variables</td>
<td>random variables</td>
</tr>
<tr>
<td>weights</td>
<td>probabilities</td>
</tr>
<tr>
<td>maximum weight assignment</td>
<td>marginal probabilities</td>
</tr>
</tbody>
</table>
Gibbs sampling

Algorithm: Gibbs sampling

Initialize x to a random complete assignment

Loop through $i = 1, \ldots, n$ until convergence:

- Set $x_i = v$ with prob. $P(X_i = v \mid X_{-i} = x_{-i})$
 (X_{-i} denotes all variables except X_i)

- Increment count$_i(x_i)$

Estimate $\hat{P}(X_i = x_i) = \frac{\text{count}_i(x_i)}{\sum_v \text{count}_i(v)}$

Example: sampling one variable

Weight$(x \cup \{X_2 : 0\}) = 1$ prob. 0.2
Weight$(x \cup \{X_2 : 1\}) = 2$ prob. 0.4
Weight$(x \cup \{X_2 : 2\}) = 2$ prob. 0.4

[demo]
Search versus sampling

<table>
<thead>
<tr>
<th>Iterated Conditional Modes</th>
<th>Gibbs sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximum weight assignment</td>
<td>marginal probabilities</td>
</tr>
<tr>
<td>choose best value</td>
<td>sample a value</td>
</tr>
<tr>
<td>converges to local optimum</td>
<td>marginals converge to correct answer*</td>
</tr>
</tbody>
</table>

*under technical conditions (sufficient condition: all weights positive), but could take exponential time
Objective: compute marginal probabilities $P(X_i = x_i)$

Gibbs sampling: sample one variable at a time, count visitations

More generally: Markov chain Monte Carlo (MCMC) powerful toolkit of randomized procedures
Markov networks versus Bayesian networks

Both define a joint probability distribution over assignments

- **Markov networks**
 - arbitrary factors
 - set of preferences

- **Bayesian networks**
 - local conditional probabilities
 - generative process
Review: probability

Random variables: sunshine $S \in \{0, 1\}$, rain $R \in \{0, 1\}$

Joint distribution (probabilistic database):

$$
\begin{array}{ccc}
 s & r & P(S = s, R = r) \\
 0 & 0 & 0.20 \\
 0 & 1 & 0.08 \\
 1 & 0 & 0.70 \\
 1 & 1 & 0.02 \\
\end{array}
$$

Marginal distribution (aggregate rows):

$$
\begin{array}{c}
 s & P(S = s) \\
 0 & 0.28 \\
 1 & 0.72 \\
\end{array}
$$

Conditional distribution (select rows, normalize):

$$
\begin{array}{c}
 s & P(S = s \mid R = 1) \\
 0 & 0.8 \\
 1 & 0.2 \\
\end{array}
$$
Bayesian network (definition)

Definition: Bayesian network

Let $X = (X_1, \ldots, X_n)$ be random variables.

A Bayesian network is a directed acyclic graph (DAG) that specifies a joint distribution over X as a product of local conditional distributions, one for each node:

$$
P(X_1 = x_1, \ldots, X_n = x_n) \overset{\text{def}}{=} \prod_{i=1}^{n} p(x_i \mid x_{\text{Parents}(i)})$$
Probabilistic inference (definition)

Input

Bayesian network: \(P(X_1, \ldots, X_n) \)

Evidence: \(E = e \) where \(E \subseteq X \) is subset of variables

Query: \(Q \subseteq X \) is subset of variables

Output

\(P(Q \mid E = e) \) \(\leftrightarrow \) \(P(Q = q \mid E = e) \) for all values \(q \)

Example: if coughing and itchy eyes, have a cold?

\(P(C \mid H = 1, I = 1) \)
Bayesian network (alarm)

\[p(b) = \epsilon \cdot [b = 1] + (1 - \epsilon) \cdot [b = 0] \]
\[p(e) = \epsilon \cdot [e = 1] + (1 - \epsilon) \cdot [e = 0] \]
\[p(a \mid b, e) = [a = (b \lor e)] \]

\[\mathbb{P}(B = b, E = e, A = a) \overset{\text{def}}{=} p(b)p(e)p(a \mid b, e) \]
Explaining away

Key idea: explaining away

Suppose two causes positively influence an effect. Conditioned on the effect, further conditioning on one cause reduces the probability of the other cause.

$$\mathbb{P}(B = 1 \mid A = 1, E = 1) < \mathbb{P}(B = 1 \mid A = 1)$$

Note: happens even if causes are independent!
Summary

• Random variables capture state of world
• Directed edges between variables represent dependencies
• Local conditional distributions \Rightarrow joint distribution
• Probabilistic inference: ask questions about world
• Captures reasoning patterns (e.g., explaining away)
Probabilistic programs

Joint distribution:

\[P(B = b, E = e, A = a) = p(b)p(e)p(a \mid b, e) \]

Probabilistic program: alarm

- \(B \sim \text{Bernoulli}(\epsilon) \)
- \(E \sim \text{Bernoulli}(\epsilon) \)
- \(A = B \lor E \)

```
def Bernoulli(epsilon):
    return random.random() < epsilon
```

Key idea: probabilistic program

A randomized program that sets the random variables.
Reduction to Markov networks

\[
\mathbb{P}(C = c, A = a, H = h, I = i) = \frac{1}{Z} p(c)p(a)p(h \mid c, a)p(i \mid a)
\]

Bayesian network = Markov network with normalization constant \(Z = 1 \)

Reminder: single factor that connects all parents!
Conditioning on evidence

Markov network:

\[
P(C = c, A = a \mid H = 1, I = 1) = \frac{1}{Z} p(c)p(a)p(h = 1 \mid c, a)p(i = 1 \mid a)
\]

Bayesian network with evidence = Markov network with \(Z = P(H = 1, I = 1) \)

Solution: run any inference algorithm for Markov networks (e.g., Gibbs sampling)!

[demo]
Leveraging additional structure: unobserved leaves

Markov network:

\[
P(C = c, A = a, I = i \mid H = 1) = \frac{1}{Z} p(c)p(a)p(h = 1 \mid c, a)p(i \mid a),
\]

where \(Z = P(H = 1) \)

Question: \(P(C = 1 \mid H = 1) \)

Can we reduce the Markov network before running inference?
Leveraging additional structure: unobserved leaves

Markov network:

\[
P(C = c, A = a | H = 1) = \sum_i P(C = c, A = a, I = i | H = 1) \\
= \sum_i \frac{1}{Z} p(c)p(a)p(h = 1 | c, a)p(i | a) \\
= \frac{1}{Z} p(c)p(a)p(h = 1 | c, a) \sum_i p(i | a) \\
= \frac{1}{Z} p(c)p(a)p(h = 1 | c, a)
\]

Throw away any unobserved leaves before running inference!
Leveraging additional structure: independence

Markov network:

\[
P(C = c \mid I = 1) = \sum_{a,h} P(C = c, A = a, H = h \mid I = 1)
= \sum_{a,h} \frac{1}{Z} p(c)p(a)p(h \mid c, a)p(i = 1 \mid a)
= \sum_{a} \frac{1}{Z} p(c)p(a)p(i = 1 \mid a)
= p(c) \sum_{a} \frac{1}{Z} p(a)p(i = 1 \mid a)
= p(c)
\]

Throw away any disconnected components before running inference!
Summary

- Condition on evidence (e.g., $I = 1$)
- Throw away unobserved leaves (e.g., H)
- Throw away disconnected components (e.g., A and I)
- Define Markov network out of remaining factors
- Run your favorite inference algorithm (e.g., manual, Gibbs sampling)
Inference questions

Question (**filtering**):
\[P(H_2 \mid E_1 = 0, E_2 = 2) \]

Question (**smoothing**):
\[P(H_2 \mid E_1 = 0, E_2 = 2, E_3 = 2) \]

Note: filtering is a special case of smoothing if marginalize unobserved leaves
Lattice representation

- Edge \(\text{start} \Rightarrow H_1 = h_1 \) has weight \(p(h_1)p(e_1 \mid h_1) \)
- Edge \(H_{i-1} = h_{i-1} \Rightarrow H_i = h_i \) has weight \(p(h_i \mid h_{i-1})p(e_i \mid h_i) \)
- Each path from \(\text{start} \) to \(\text{end} \) is an assignment with weight equal to the product of edge weights

Key: \(\mathbb{P}(H_i = h_i \mid E = e) \) is the weighted fraction of paths through \(H_i = h_i \)
Forward and backward messages

Forward: \(F_i(h_i) = \sum_{h_{i-1}} F_{i-1}(h_{i-1}) \text{Weight}(H_{i-1} = h_{i-1}, H_i = h_i) \)

sum of weights of paths from \text{start} to \(H_i = h_i \)

Backward: \(B_i(h_i) = \sum_{h_{i+1}} B_{i+1}(h_{i+1}) \text{Weight}(H_i = h_i, H_{i+1} = h_{i+1}) \)

sum of weights of paths from \(H_i = h_i \) to \text{end} \)

Define \(S_i(h_i) = F_i(h_i)B_i(h_i) \):

sum of weights of paths from \text{start} to \text{end} through \(H_i = h_i \)
Putting everything together

\[P(H_i = h_i \mid E = e) = \frac{S_i(h_i)}{\sum_v S_i(v)} \]

Algorithm: forward-backward algorithm

- Compute \(F_1, F_2, \ldots, F_n \)
- Compute \(B_n, B_{n-1}, \ldots, B_1 \)
- Compute \(S_i \) for each \(i \) and normalize

Running time: \(O(n|\text{Domain}|^2) \)

[demo]
Review: inference in Hidden Markov models

Filtering questions:
\[P(H_1 | E_1 = 0) \]
\[P(H_2 | E_1 = 0, E_2 = 2) \]
\[P(H_3 | E_1 = 0, E_2 = 2, E_3 = 2) \]

Problem: many possible location values for \(H_i \)

Forward-backward is too slow (\(O(n|\text{Domain}|^2) \))...
Why sampling?

Sampling is especially important when there is high uncertainty!
Particle filtering

Algorithm: particle filtering

Initialize $C \leftarrow \{\emptyset\}$

For each $i = 1, \ldots, n$:

Propose:

$$C' \leftarrow \{h \cup \{H_i : h_i\} : h \in C, h_i \sim p(h_i | h_{i-1})\}$$

Weight:

Compute weights $w(h) = p(e_i | h_i)$ for $h \in C'$

Resample:

$C \leftarrow K$ particles drawn independently from $\frac{w(h)}{\sum_{h' \in C} w(h')}$

[demo: particleFiltering({K:100})]
Step 1: propose

Old particles: \(\approx \mathbb{P}(H_1, H_2 \mid E_1 = 0, E_2 = 2) \)

\{H_1 : 0, H_2 : 1\}

\{H_1 : 1, H_2 : 2\}

Key idea: proposal distribution

For each old particle \((h_1, h_2)\), sample \(H_3 \sim p(h_3 \mid h_2)\).

New particles: \(\approx \mathbb{P}(H_1, H_2, H_3 \mid E_1 = 0, E_2 = 2) \)

\{H_1 : 0, H_2 : 1, H_3 : 1\}

\{H_1 : 1, H_2 : 2, H_3 : 2\}
Step 2: weight

Old particles: \(\approx \mathbb{P}(H_1, H_2, H_3 \mid E_1 = 0, E_2 = 1) \)

\[
\begin{align*}
\{ H_1 : 0, H_2 : 1 : H_3 : 1 \} \\
\{ H_1 : 1, H_2 : 2 : H_3 : 2 \}
\end{align*}
\]

Key idea: weighting based on evidence

For each old particle \((h_1, h_2, h_3)\), weight it by \(p(e_3 = 2 \mid h_3)\).

<table>
<thead>
<tr>
<th>(h_3)</th>
<th>(p(e_3 = 2 \mid h_3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>(1/4)</td>
</tr>
<tr>
<td>2</td>
<td>(1/2)</td>
</tr>
</tbody>
</table>

New particles: \(\approx \mathbb{P}(H_1, H_2, H_3 \mid E_1 = 0, E_2 = 1, E_3 = 2) \)

\[
\begin{align*}
\{ H_1 : 0, H_2 : 1 : H_3 : 1 \} (1/4) \\
\{ H_1 : 1, H_2 : 2 : H_3 : 2 \} (1/2)
\end{align*}
\]
Step 3: resample

Old particles: $\approx \mathbb{P}(H_1, H_2, H_3 \mid E_1 = 0, E_2 = 2, E_3 = 2)$

- $\{H_1: 0, H_2: 1 : H_3: 1\}$ (1/4) $\Rightarrow 1/3$
- $\{H_1: 1, H_2: 2 : H_3: 2\}$ (1/2) $\Rightarrow 2/3$

Key idea: resampling

Normalize weights and draw K samples to redistribute particles to more promising areas.

New particles: $\approx \mathbb{P}(H_1, H_2, H_3 \mid E_1 = 0, E_2 = 2, E_3 = 2)$

- $\{H_1: 1, H_2: 2 : H_3: 2\}$
- $\{H_1: 1, H_2: 2 : H_3: 2\}$
Summary

\[P(H_3 \mid E_1 = 0, E_2 = 2, E_3 = 2) \]

- Use particles to represent an approximate distribution

Propose (transitions) Weight (emissions) Resample

- Can scale to large number of locations (unlike forward-backward)
- Maintains better particle diversity (compared to beam search)
Where do parameters come from?

\[C \rightarrow A \]

\[H \rightarrow I \]

<table>
<thead>
<tr>
<th>c</th>
<th>p(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>0</td>
<td>?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>p(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>0</td>
<td>?</td>
</tr>
</tbody>
</table>

| c | a | h | p(h | c, a) |
|---|---|---|----------|
| 0 | 0 | 0 | ? |
| 0 | 0 | 1 | ? |
| 0 | 1 | 0 | ? |
| 0 | 1 | 1 | ? |
| 1 | 0 | 0 | ? |
| 1 | 0 | 1 | ? |
| 1 | 1 | 0 | ? |
| 1 | 1 | 1 | ? |

| a | i | p(i | a) |
|---|---|------|
| 0 | 0 | ? |
| 0 | 1 | ? |
| 1 | 0 | ? |
| 1 | 1 | ? |
Learning task

Training data

D_{train} (an example is an assignment to X)

Parameters

θ (local conditional probabilities)
Parameter sharing

Key idea: parameter sharing

The local conditional distributions of different variables can share the same parameters.

Impact: more reliable estimates, less expressive model
General case

Bayesian network: variables X_1, \ldots, X_n

Parameters: collection of distributions $\theta = \{p_d : d \in D\}$ (e.g., $D = \{\text{start, trans, emit}\}$)

Each variable X_i is generated from distribution p_{d_i}:

$$\mathbb{P}(X_1 = x_1, \ldots, X_n = x_n) = \prod_{i=1}^{n} p_{d_i}(x_i \mid x_{\text{Parents}(i)})$$

Parameter sharing: d_i could be same for multiple i
General case: learning algorithm

Input: training examples $\mathcal{D}_{\text{train}}$ of full assignments

Output: parameters $\theta = \{p_d : d \in D\}$

Algorithm: count and normalize

Count:
- For each $x \in \mathcal{D}_{\text{train}}$:
 - For each variable x_i:
 - Increment $\text{count}_{d_i}(x_{\text{Parents}(i)}, x_i)$

Normalize:
- For each d and local assignment $x_{\text{Parents}(i)}$:
 - Set $p_d(x_i | x_{\text{Parents}(i)}) \propto \text{count}_d(x_{\text{Parents}(i)}, x_i)$
Maximum likelihood

Maximum likelihood objective:

$$\max_{\theta} \prod_{x \in D_{\text{train}}} P(X = x; \theta)$$

Algorithm: maximum likelihood

Count:
- For each $x \in D_{\text{train}}$:
 - For each variable x_i:
 - Increment $\text{count}_{d_i}(x_{\text{Parents}(i)}; x_i)$

Normalize:
- For each d and local assignment $x_{\text{Parents}(i)}$:
 - Set $p_d(x_i \mid x_{\text{Parents}(i)}) \propto \text{count}_d(x_{\text{Parents}(i)}; x_i)$

Closed form — no iterative optimization!
Review: maximum likelihood

\[\mathbb{P}(G = g, R = r) = p_G(g)p_R(r \mid g) \]

\[D_{\text{train}} = \{(d, 4), (d, 4), (d, 5), (c, 1), (c, 5)\} \]

<table>
<thead>
<tr>
<th>(g)</th>
<th>(\text{count}_G(g))</th>
<th>(p_G(g))</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>3</td>
<td>3/5</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
<td>2/5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(g)</th>
<th>(r)</th>
<th>(\text{count}_R(g, r))</th>
<th>(p_R(r \mid g))</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>4</td>
<td>2</td>
<td>2/3</td>
</tr>
<tr>
<td>d</td>
<td>5</td>
<td>1</td>
<td>1/3</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>1</td>
<td>1/2</td>
</tr>
<tr>
<td>c</td>
<td>5</td>
<td>1</td>
<td>1/2</td>
</tr>
</tbody>
</table>

Do we really believe that \(p_R(r = 2 \mid g = c) = 0 \)?

Overfitting!
Laplace smoothing

Key idea: maximum likelihood with Laplace smoothing

For each distribution d and partial assignment $(x_{\text{Parents}(i)}, x_i)$:

Add λ to $\text{count}_d(x_{\text{Parents}(i)}, x_i)$.

Further increment counts $\{\text{count}_d\}$ based on D_{train}.

Hallucinate λ occurrences of each local assignment
Interplay between smoothing and data

Larger $\lambda \Rightarrow$ more smoothing \Rightarrow probabilities closer to uniform

Data wins out in the end (suppose only see $g = d$):

<table>
<thead>
<tr>
<th>g</th>
<th>$\text{count}_G(g)$</th>
<th>$p_G(g)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>$\frac{1}{2} + 1$</td>
<td>$\frac{3}{4}$</td>
</tr>
<tr>
<td>c</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{4}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>g</th>
<th>$\text{count}_G(g)$</th>
<th>$p_G(g)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>$1 + 1$</td>
<td>$\frac{2}{3}$</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>$\frac{1}{3}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>g</th>
<th>$\text{count}_G(g)$</th>
<th>$p_G(g)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>$1 + 998$</td>
<td>0.999</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>0.001</td>
</tr>
</tbody>
</table>
Motivation

Genre $G \in \{\text{drama}, \text{comedy}\}$

Jim's rating $R_1 \in \{1, 2, 3, 4, 5\}$

Martha's rating $R_2 \in \{1, 2, 3, 4, 5\}$

If observe all the variables: maximum likelihood = count and normalize

$$\mathcal{D}_{\text{train}} = \{(d, 4, 5), (d, 4, 4), (d, 5, 3), (c, 1, 2), (c, 5, 4)\}$$

What if we don’t observe some of the variables?

$$\mathcal{D}_{\text{train}} = \{ (?, 4, 5), (?, 4, 4), (?, 5, 3), (?, 1, 2), (?, 5, 4)\}$$
Expectation Maximization (EM)

Intuition: generalization of the K-means algorithm

- cluster centroids = parameters θ
- cluster assignments = hidden variables H

Variables: H is hidden, $E = e$ is observed

Algorithm: Expectation Maximization (EM)

1. Initialize θ randomly
2. Repeat until convergence:
 - **E-step:**
 - Compute $q(h) = P(H = h | E = e; \theta)$ for each h (probabilistic inference)
 - Create fully-observed weighted examples: (h, e) with weight $q(h)$
 - **M-step:**
 - Maximum likelihood (count and normalize) on weighted examples to get θ
Summary

Maximum marginal likelihood:

$$\max_{\theta} \prod_{e \in D_{\text{train}}} P(E = e; \theta)$$

EM algorithm:

\Leftarrow probabilistic inference (E-step)

hidden variables $q(h)$ parameters θ

count and normalize (M-step) \Rightarrow

Applications: decipherment, phylogenetic reconstruction, crowdsourcing
Course plan

Search problems
Markov decision processes
Adversarial games

Constraint satisfaction problems
Markov networks
Bayesian networks

Reflex
States
Variables

"Low-level intelligence"
"High-level intelligence"

Machine learning
Modeling paradigms

State-based models: search problems, MDPs, games

Applications: route finding, game playing, etc.

Think in terms of states, actions, and costs

Variable-based models: CSPs, Bayesian networks

Applications: scheduling, tracking, medical diagnosis, etc.

Think in terms of variables and factors

Logic-based models: propositional logic, first-order logic

Applications: theorem proving, verification, reasoning

Think in terms of logical formulas and inference rules
Natural language

Example:

• A dime is better than a nickel.
• A nickel is better than a penny.
• Therefore, a dime is better than a penny.

Example:

• A penny is better than nothing.
• Nothing is better than world peace.
• Therefore, a penny is better than world peace??

Natural language is slippery...
Two goals of a logic language

- **Represent** knowledge about the world
- **Reason** with that knowledge
Ingredients of a logic

Syntax: defines a set of valid **formulas** (Formulas)

Example: Rain ∧ Wet

Semantics: for each formula, specify a set of **models** (assignments / configurations of the world)

Example:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Inference rules: given \(f \), what new formulas \(g \) can be added that are guaranteed to follow \((f \vdash g) \)?

Example: from Rain ∧ Wet, derive Rain
Syntax versus semantics

Syntax: what are valid expressions in the language?

Semantics: what do these expressions mean?

Different syntax, same semantics (5):

\[2 + 3 \Leftrightarrow 3 + 2 \]

Same syntax, different semantics (1 versus 1.5):

\[3 / 2 \text{ (Python 2.7)} \not\equiv 3 / 2 \text{ (Python 3)} \]
Propositional logic

Syntax

Semantics

Inference rules

models
Logics

- Propositional logic with only Horn clauses
- Propositional logic
- Modal logic
- First-order logic with only Horn clauses
- First-order logic
- Second-order logic
- ...

Key idea: tradeoff

Balance expressivity and computational efficiency.
Syntax of propositional logic

Propositional symbols (atomic formulas): A, B, C

Logical connectives: $\neg, \land, \lor, \to, \leftrightarrow$

Build up formulas recursively—if f and g are formulas, so are the following:

- Negation: $\neg f$
- Conjunction: $f \land g$
- Disjunction: $f \lor g$
- Implication: $f \to g$
- Biconditional: $f \leftrightarrow g$
Syntax of propositional logic

Key idea: syntax provides symbols

Formulas by themselves are just symbols (syntax).
No meaning yet (semantics)!
Definition: model

A model \(w \) in propositional logic is an assignment of truth values to propositional symbols.

Example:

- 3 propositional symbols: \(A, B, C \)
- \(2^3 = 8 \) possible models \(w \):

\[
\begin{align*}
\{A : 0, B : 0, C : 0\} \\
\{A : 0, B : 0, C : 1\} \\
\{A : 0, B : 1, C : 0\} \\
\{A : 0, B : 1, C : 1\} \\
\{A : 1, B : 0, C : 0\} \\
\{A : 1, B : 0, C : 1\} \\
\{A : 1, B : 1, C : 0\} \\
\{A : 1, B : 1, C : 1\}
\end{align*}
\]
Interpretation function

Definition: interpretation function

Let f be a formula.
Let w be a model.

An interpretation function $I(f, w)$ returns:
- true (1) (say that w satisfies f)
- false (0) (say that w does not satisfy f)
Interpretation function: example

Example: interpretation function

Formula: \(f = (\neg A \land B) \leftrightarrow C \)

Model: \(w = \{ A : 1, B : 1, C : 0 \} \)

Interpretation:

\[
\begin{align*}
I((\neg A \land B) \leftrightarrow C, w) &= 1 \\
I(\neg A \land B, w) &= 0 \\
I(C, w) &= 0 \\
I(\neg A, w) &= 0 \\
I(B, w) &= 1 \\
I(A, w) &= 1
\end{align*}
\]
Formula represents a set of models

So far: each formula f and model w has an interpretation $\mathcal{I}(f, w) \in \{0, 1\}$

Definition: models

Let $\mathcal{M}(f)$ be the set of models w for which $\mathcal{I}(f, w) = 1$.
Models: example

Formula:

\[f = \text{Rain} \lor \text{Wet} \]

Models:

\[\mathcal{M}(f) = \]

Key idea: compact representation

A formula compactly represents a set of models.
Definition: Knowledge base

A **knowledge base** KB is a set of formulas representing their conjunction / intersection:

$$M(KB) = \bigcap_{f \in KB} M(f).$$

Intuition: KB specifies constraints on the world. $M(KB)$ is the set of all worlds satisfying those constraints.

Let $KB = \{\text{Rain} \lor \text{Snow}, \text{Traffic}\}$.

![Venn diagram showing $M(KB)$ as the intersection of $M(\text{Rain} \lor \text{Snow})$ and $M(\text{Traffic})$.]
Adding to the knowledge base

Adding more formulas to the knowledge base:

\[\text{KB} \rightarrow \text{KB} \cup \{f\} \]

Shrinks the set of models:

\[\mathcal{M}(\text{KB}) \rightarrow \mathcal{M}(\text{KB}) \cap \mathcal{M}(f) \]

How much does \(\mathcal{M}(\text{KB}) \) shrink?

[whiteboard]
Entailment

Definition: entailment

KB entails f (written $\text{KB} \models f$) iff

$$\mathcal{M}(\text{KB}) \subseteq \mathcal{M}(f).$$

Example: Rain \land Snow \models Snow
Contradiction

\[\mathcal{M}(KB) \quad \mathcal{M}(f) \]

Intuition: \(f \) contradicts what we know (captured in KB).

Definition: contradiction

\(KB \) contradicts \(f \) iff \(\mathcal{M}(KB) \cap \mathcal{M}(f) = \emptyset \).

Example: Rain \(\land \) Snow contradicts \(\neg \)Snow
Contradiction and entailment

Contradiction:

\[M(KB) \]
\[M(f) \]

Entailment:

\[M(KB) \]
\[M(\neg f) \]

Proposition: contradiction and entailment

KB contradicts \(f \) iff KB entails \(\neg f \).
Contingency

\[M(\text{KB}) \cap M(f) \]

Intuition: \(f \) adds non-trivial information to \(\text{KB} \)

\[\emptyset \subsetneq M(\text{KB}) \cap M(f) \subsetneq M(\text{KB}) \]

Example: Rain and Snow
Satisfiability

Definition: satisfiability

A knowledge base KB is **satisfiable** if \(M(KB) \neq \emptyset \).

Reduce \(\text{Ask}[f] \) and \(\text{Tell}[f] \) to satisfiability:

- Is \(KB \cup \{\neg f\} \) satisfiable?
 - no: entailment
 - yes: Is \(KB \cup \{f\} \) satisfiable?
 - no: contradiction
 - yes: contingent
Model checking

Checking satisfiability (SAT) in propositional logic is a special case of solving CSPs!

Mapping:

<table>
<thead>
<tr>
<th>Propositional symbol</th>
<th>\Rightarrow</th>
<th>variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>\Rightarrow</td>
<td>constraint</td>
</tr>
<tr>
<td>model</td>
<td>\Leftarrow</td>
<td>assignment</td>
</tr>
</tbody>
</table>
Model checking

Example: model checking

\[KB = \{A \lor B, B \leftrightarrow \neg C\} \]

Propositional symbols (CSP variables):

\[\{A, B, C\} \]

CSP:

\[A \lor B \quad B \leftrightarrow \neg C \]

Consistent assignment (satisfying model):

\[\{A : 1, B : 0, C : 1\} \]
Propositional logic

Syntax

- formula

Semantics

- models

Inference

- rules
Inference rules

Example of making an inference:

It is raining. (Rain)
If it is raining, then it is wet. (Rain \rightarrow Wet)
Therefore, it is wet. (Wet)

$$\text{Rain, \quad Rain} \rightarrow \text{Wet} \quad \text{(premises)}$$
$$\quad \text{Wet} \quad \text{(conclusion)}$$

Definition: Modus ponens inference rule

For any propositional symbols p and q:

$$p, \quad p \rightarrow q \quad \Rightarrow \quad q$$
Inference framework

Definition: inference rule

If f_1, \ldots, f_k, g are formulas, then the following is an inference rule:

$$\frac{f_1, \ldots, f_k}{g}$$

Key idea: inference rules

Rules operate directly on syntax, not on semantics.
Inference algorithm

Algorithm: forward inference

Input: set of inference rules Rules.

Repeat until no changes to KB:

Choose set of formulas $f_1, \ldots, f_k \in \text{KB}$.

If matching rule $\frac{f_1, \ldots, f_k}{g}$ exists:

Add g to KB.

Definition: derivation

KB derives/proves f (KB $\vdash f$) iff f eventually gets added to KB.
Desiderata for inference rules

Semantics

Interpretation defines \textit{entailed/true} formulas: $\text{KB} \models f$:

![Diagram showing $M(KB)$ and $M(f)$]

Syntax:

Inference rules \textit{derive} formulas: $\text{KB} \vdash f$

How does $\{f : \text{KB} \models f\}$ relate to $\{f : \text{KB} \vdash f\}$?
Truth

\{ f : \text{KB} \models f \}
A set of inference rules Rules is sound if:
\[\{ f : \text{KB} \vdash f \} \subseteq \{ f : \text{KB} \models f \} \]
A set of inference rules Rules is complete if:

$$\{ f : \text{KB} \vdash f \} \supseteq \{ f : \text{KB} \models f \}$$
Soundness and completeness

The truth, the whole truth, and nothing but the truth.

- **Soundness**: nothing but the truth
- **Completeness**: whole truth
Recall completeness: inference rules derive all entailed formulas \((f \text{ such that } KB \models f)\)

Example: Modus ponens is incomplete

Setup:

\[
\begin{align*}
KB &= \{\text{Rain, Rain } \lor \text{ Snow } \rightarrow \text{ Wet}\} \\
\text{ } & \text{ } \\
\text{ } & f = \text{ Wet} \\
\text{ } & \text{Rules } = \{ \frac{f}{g} , \frac{f \rightarrow g}{f} \} \text{ (Modus ponens)} \\
\text{Semantically: } & KB \models f \text{ (f is entailed).} \\
\text{Syntactically: } & KB \not\models f \text{ (can’t derive } f)\text{.}
\end{align*}
\]

Incomplete!
Fixing completeness

Option 1: Restrict the allowed set of formulas

- Propositional logic
 - Propositional logic with only Horn clauses

Option 2: Use more powerful inference rules

- Modus ponens
 - Resolution
Definite clauses

Definition: Definite clause

A **definite clause** has the following form:

$$(p_1 \land \cdots \land p_k) \rightarrow q$$

where p_1, \ldots, p_k, q are propositional symbols.

Intuition: if p_1, \ldots, p_k hold, then q holds.

Example: $(\text{Rain} \land \text{Snow}) \rightarrow \text{Traffic}$

Example: Traffic

Non-example: $\neg \text{Traffic}$

Non-example: $(\text{Rain} \land \text{Snow}) \rightarrow (\text{Traffic} \lor \text{Peaceful})$
Horn clauses

Definition: Horn clause

A **Horn clause** is either:

- a definite clause \((p_1 \land \cdots \land p_k \rightarrow q)\)
- a goal clause \((p_1 \land \cdots \land p_k \rightarrow \text{false})\)

Example (definite): \((\text{Rain} \land \text{Snow}) \rightarrow \text{Traffic}\)

Example (goal): \(\text{Traffic} \land \text{Accident} \rightarrow \text{false}\)

Equivalent: \(\neg(\text{Traffic} \land \text{Accident})\)
Modus ponens

Inference rule:

\[
\begin{array}{c}
 p_1, \cdots, p_k, (p_1 \land \cdots \land p_k) \rightarrow q \\
 \hline
 q
\end{array}
\]

Example:

\[
\begin{array}{c}
 \text{Wet, Weekday, Wet} \land \text{Weekday} \rightarrow \text{Traffic} \\
 \hline
 \text{Traffic}
\end{array}
\]
Completeness of modus ponens

Theorem: Modus ponens on Horn clauses

Modus ponens is **complete** with respect to Horn clauses:
- Suppose KB contains only Horn clauses and \(p \) is an entailed propositional symbol.
- Then applying modus ponens will derive \(p \).

Upshot:

\[\text{KB} \models p \text{ (entailment) is the same as } \text{KB} \vdash p \text{ (derivation)}! \]
Resolution [Robinson, 1965]

General clauses have any number of literals:

$$\neg A \lor B \lor \neg C \lor D \lor \neg E \lor F$$

Example: resolution inference rule

Rain \lor Snow, \negSnow \lor Traffic

$$\downarrow$$

Rain \lor Traffic

Definition: resolution inference rule

$$f_1 \lor \cdots \lor f_n \lor p, \quad \neg p \lor g_1 \lor \cdots \lor g_m$$

$$\downarrow$$

$$f_1 \lor \cdots \lor f_n \lor g_1 \lor \cdots \lor g_m$$
Conjunctive normal form

So far: resolution only works on clauses...but that's enough!

Definition: conjunctive normal form (CNF)

A CNF formula is a conjunction of clauses.

Example: \((A \lor B \lor \neg C) \land (\neg B \lor D)\)

Equivalent: knowledge base where each formula is a clause

Proposition: conversion to CNF

Every formula \(f\) in propositional logic can be converted into an equivalent CNF formula \(f'\):

\[M(f) = M(f') \]
Conversion to CNF: general

Conversion rules:

- Eliminate \leftrightarrow:
 $$\frac{f \leftrightarrow g}{(f \rightarrow g) \land (g \rightarrow f)}$$

- Eliminate \rightarrow:
 $$\frac{f \rightarrow g}{\neg f \lor g}$$

- Move \neg inwards:
 $$\frac{\neg(f \land g)}{\neg f \lor \neg g}$$

- Move \neg inwards:
 $$\frac{\neg(f \lor g)}{\neg f \land \neg g}$$

- Eliminate double negation:
 $$\frac{\neg\neg f}{f}$$

- Distribute \lor over \land:
 $$\frac{f \lor (g \land h)}{(f \lor g) \land (f \lor h)}$$
Resolution algorithm

Recall: relationship between entailment and contradiction (basically "proof by contradiction")

\[KB \models f \iff KB \cup \{\neg f\} \text{ is unsatisfiable} \]

Algorithm: resolution-based inference

- Add \(\neg f\) into KB.
- Convert all formulas into **CNF**.
- Repeatedly apply **resolution** rule.
- Return entailment iff derive false.
Resolution: example

\(\text{KB}' = \{ A \rightarrow (B \lor C), A, \neg B, \neg C \} \)

Convert to CNF:

\(\text{KB}' = \{ \neg A \lor B \lor C, A, \neg B, \neg C \} \)

Repeatedly apply resolution rule:

Conclusion: \(\text{KB} \) entails \(f \)
Limitations of propositional logic

All students know arithmetic.

AliceIsStudent → AliceKnowsArithmetic
BobIsStudent → BobKnowsArithmetic
...

Propositional logic is very clunky. What’s missing?

- **Objects and predicates**: propositions (e.g., AliceKnowsArithmetic) have more internal structure (alice, Knows, arithmetic)
- **Quantifiers and variables**: *all* is a quantifier which applies to each person, don’t want to enumerate them all...
First-order logic: examples

Alice and Bob both know arithmetic.

\[\text{Knows}(\text{alice, arithmetic}) \land \text{Knows}(\text{bob, arithmetic}) \]

All students know arithmetic.

\[\forall x \, \text{Student}(x) \rightarrow \text{Knows}(x, \text{arithmetic}) \]
Syntax of first-order logic

Terms (refer to objects):

- Constant symbol (e.g., arithmetic)
- Variable (e.g., x)
- Function of terms (e.g., $\text{Sum}(3, x)$)

Formulas (refer to truth values):

- Atomic formulas (atoms): predicate applied to terms (e.g., $\text{Knows}(x, \text{arithmetic})$)
- Connectives applied to formulas (e.g., $\text{Student}(x) \rightarrow \text{Knows}(x, \text{arithmetic})$)
- Quantifiers applied to formulas (e.g., $\forall x \text{ Student}(x) \rightarrow \text{Knows}(x, \text{arithmetic})$)
Quantifiers

Universal quantification (\(\forall\)):

Think conjunction: \(\forall x P(x)\) is like \(P(A) \land P(B) \land \cdots\)

Existential quantification (\(\exists\)):

Think disjunction: \(\exists x P(x)\) is like \(P(A) \lor P(B) \lor \cdots\)

Some properties:

- \(\neg \forall x P(x)\) equivalent to \(\exists x \neg P(x)\)
- \(\forall x \exists y \text{Knows}(x, y)\) different from \(\exists y \forall x \text{Knows}(x, y)\)
Natural language quantifiers

Universal quantification (\forall):

Every student knows arithmetic.

$$\forall x \text{Student}(x) \rightarrow \text{Knows}(x, \text{arithmetic})$$

Existential quantification (\exists):

Some student knows arithmetic.

$$\exists x \text{Student}(x) \land \text{Knows}(x, \text{arithmetic})$$

Note the different connectives!
Models in first-order logic

Definition: model in first-order logic

A model w in first-order logic maps:

- constant symbols to objects

 $w(\text{alice}) = o_1, w(\text{bob}) = o_2, w(\text{arithmetic}) = o_3$

- predicate symbols to tuples of objects

 $w(\text{Knows}) = \{(o_1, o_3), (o_2, o_3), \ldots \}$
Graph representation of a model

If only have unary and binary predicates, a model w can be represented as a directed graph:

- Nodes are objects, labeled with **constant symbols**
- Directed edges are binary predicates, labeled with **predicate symbols**; unary predicates are additional node labels
A restriction on models

John and Bob are students.

\[\text{Student}(\text{john}) \land \text{Student}(\text{bob}) \]

- **Unique names assumption:** Each object has **at most one** constant symbol. This rules out \(w_2 \).
- **Domain closure:** Each object has **at least one** constant symbol. This rules out \(w_3 \).

Point:

constant symbol \(\Rightarrow \) object
Propositionalization

If one-to-one mapping between constant symbols and objects (unique names and domain closure),

first-order logic is syntactic sugar for propositional logic:

Knowledge base in first-order logic

\[
\begin{align*}
\text{Student}(alice) \land \text{Student}(bob) \\
\forall x \text{ Student}(x) \rightarrow \text{Person}(x) \\
\exists x \text{ Student}(x) \land \text{Creative}(x)
\end{align*}
\]

Knowledge base in propositional logic

\[
\begin{align*}
\text{Studentalice} \land \text{Studentbob} \\
(\text{Studentalice} \rightarrow \text{Personalice}) \land (\text{Studentbob} \rightarrow \text{Personbob}) \\
(\text{Studentalice} \land \text{Creativealice}) \lor (\text{Studentbob} \land \text{Creativebob})
\end{align*}
\]

Point: use any inference algorithm for propositional logic!
Substitution

\[\text{Subst}[\{x/\text{alice}\}, P(x)] = P(\text{alice}) \]

\[\text{Subst}[\{x/\text{alice}, y/z\}, P(x) \land K(x, y)] = P(\text{alice}) \land K(\text{alice}, z) \]

Definition: Substitution

A substitution \(\theta \) is a mapping from variables to terms.

\(\text{Subst}[\theta, f] \) returns the result of performing substitution \(\theta \) on \(f \).
Unification

\[
\text{Unify}[\text{Knows}(\text{alice, arithmetic}), \text{Knows}(x, \text{arithmetic})] = \{x/\text{alice}\}
\]

\[
\text{Unify}[\text{Knows}(\text{alice}, y), \text{Knows}(x, z)] = \{x/\text{alice}, y/z\}
\]

\[
\text{Unify}[\text{Knows}(\text{alice}, y), \text{Knows}(\text{bob}, z)] = \text{fail}
\]

\[
\text{Unify}[\text{Knows}(\text{alice}, y), \text{Knows}(x, F(x))] = \{x/\text{alice}, y/F(\text{alice})\}
\]

Definition: Unification

Unification takes two formulas \(f \) and \(g \) and returns a substitution \(\theta \) which is the most general unifier:

\[
\text{Unify}[f, g] = \theta \text{ such that } \text{Subst}[\theta, f] = \text{Subst}[\theta, g]
\]

or "fail" if no such \(\theta \) exists.
Modus ponens

Definition: modus ponens (first-order logic)

\[a_1', \ldots, a_k' \quad \forall x_1 \cdots \forall x_n (a_1 \land \cdots \land a_k) \rightarrow b \]

Get most general unifier \(\theta \) on premises:
- \(\theta = \text{Unify}[a_1' \land \cdots \land a_k', a_1 \land \cdots \land a_k] \)

Apply \(\theta \) to conclusion:
- \(\text{Subst}[\theta, b] = b' \)
Complexity

Theorem: completeness

Modus ponens is complete for first-order logic with only Horn clauses.

Theorem: semi-decidability

First-order logic (even restricted to only Horn clauses) is **semi-decidable**.

- If $\text{KB} \models f$, forward inference on complete inference rules will prove f in finite time.
- If $\text{KB} \not\models f$, no algorithm can show this in finite time.