## Course plan



**Machine learning** 



### Variable-based models

#### Special cases:

- Constraint satisfaction problems
- Markov networks
- Bayesian networks

```
Key idea: variables-
```

- Solutions to problems  $\Rightarrow$  assignments to variables (modeling).
- Decisions about variable ordering, etc. chosen by inference.

Higher-level modeling language than state-based models

# Factor graph







#### Factors

#### Definition: scope and arity-

**Scope** of a factor  $f_j$ : set of variables it depends on. **Arity** of  $f_j$  is the number of variables in the scope. **Unary** factors (arity 1); **Binary** factors (arity 2). **Constraints** are factors that return 0 or 1.





#### Example: map coloring-

Scope of  $f_1(X) = [WA \neq NT]$  is  $\{WA, NT\}$  $f_1$  is a binary constraint

# Assignment weights



An assignment is **consistent** if Weight(x) > 0.

Objective: find the maximum weight assignment

 $\arg\max_x \mathsf{Weight}(x)$ 

A CSP is satisfiable if  $\max_x \text{Weight}(x) > 0$ .







Variables, factors: specify locally

Weight
$$({X_1 : B, X_2 : B, X_3 : R}) = 1 \cdot 1 \cdot 2 \cdot 2 = 4$$

Assignments, weights: optimize globally

## Example: object tracking





(O) Noisy sensors report positions: 0, 2, 2.(T) Objects can't teleport.

What trajectory did the object take?



# Example: object tracking CSP

Factor graph:



#### [demo]

- Variables  $X_i \in \{0, 1, 2\}$ : position of object at time i
- Observation factors  $o_i(x_i)$ : noisy information compatible with position
- Transition factors  $t_i(x_i, x_{i+1})$ : object positions can't change too much





• Decide on variables and domains

• Translate each desideratum into a set of factors

- Try to keep CSP small (variables, factors, domains, arities)
- When implementing each factor, think in terms of checking a solution rather than computing the solution

# Backtracking search

#### Algorithm: backtracking search-

#### $\mathsf{Backtrack}(x, w, \mathsf{Domains})$ :

- If x is complete assignment: update best and return
- Choose unassigned **VARIABLE**  $X_i$
- Order **VALUES** Domain<sub>i</sub> of chosen  $X_i$
- For each value v in that order:
  - $\delta \leftarrow \prod_{f_j \in D(x, X_i)} f_j(x \cup \{X_i : v\})$
  - If  $\delta = 0$ : continue
  - Domains'  $\leftarrow$  Domains via **LOOKAHEAD**
  - If any Domains' is empty: continue
  - $\mathsf{Backtrack}(x \cup \{X_i : v\}, w\delta, \mathsf{Domains'})$

#### Partial assignment weights

Idea: compute weight of partial assignment as we go



### Dependent factors

• Partial assignment (e.g.,  $x = \{WA : R, NT : G\}$ )



#### Definition: dependent factors-

Let  $D(x, X_i)$  be set of factors depending on  $X_i$  and x but not on unassigned variables.

 $D(\{\mathsf{WA}:\mathsf{R},\mathsf{NT}:\mathsf{G}\},\mathsf{SA})=\{[\mathsf{WA}\neq\mathsf{SA}],[\mathsf{NT}\neq\mathsf{SA}]\}$ 

# Lookahead: forward checking

Key idea: forward checking (one-step lookahead)-

- After assigning a variable X<sub>i</sub>, eliminate inconsistent values from the domains of X<sub>i</sub>'s neighbors.
- If any domain becomes empty, return.



# Choosing an unassigned variable



Which variable to assign next?

Key idea: most constrained variable

Choose variable that has the smallest domain.

This example: SA (has only one value)

## Ordering values of a selected variable

What values to try for Q?



2+2+2=6 consistent values



1+1+2=4 consistent values

#### Key idea: least constrained value-

Order values of selected  $X_i$  by decreasing number of consistent values of neighboring variables.

# When to fail?



Most constrained variable (MCV):

- Must assign every variable
- If going to fail, fail early  $\Rightarrow$  more pruning

Least constrained value (LCV):

- Need to choose **some** value
- Choose value that is most likely to lead to solution

#### When do these heuristics help?

Most constrained variable: useful when some factors are constraints (can prune assignments with weight 0)

$$[x_1 = x_2] \qquad [x_2 \neq x_3] + 2$$

• Least constrained value: useful when **all** factors are constraints (all assignment weights are 1 or 0)

$$[x_1 = x_2] \qquad \qquad [x_2 \neq x_3]$$

• Forward checking: needed to prune domains to make heuristics useful!

# Arc consistency



A variable  $X_i$  is **arc consistent** with respect to  $X_j$  if for each  $x_i \in \text{Domain}_i$ , there exists  $x_j \in \text{Domain}_j$  such that  $f(\{X_i : x_i, X_j : x_j\}) \neq 0$  for all factors f whose scope contains  $X_i$  and  $X_j$ .

#### Algorithm: enforce arc consistency-

EnforceArcConsistency $(X_i, X_j)$ : Remove values from Domain<sub>i</sub> to make  $X_i$  arc consistent with respect to  $X_j$ .

#### AC-3

Forward checking: when assign  $X_j : x_j$ , set  $Domain_j = \{x_j\}$  and enforce arc consistency on all neighbors  $X_i$  with respect to  $X_j$ 

AC-3: repeatedly enforce arc consistency on all variables



 $X_i$ 

### Limitations of AC-3

• AC-3 isn't always effective:



- No consistent assignments, but AC-3 doesn't detect a problem!
- Intuition: if we look locally at the graph, nothing blatantly wrong...

# Backtracking search



# Greedy search



#### Beam search



Beam size K = 4

#### Beam search

Idea: keep  $\leq K$  candidate list C of partial assignments

| - 🗖 Algorithm: beam search————                                   |
|------------------------------------------------------------------|
|                                                                  |
| Initialize $C \leftarrow [\{\}]$                                 |
| For each $i = 1, \ldots, n$ :                                    |
| Extend:                                                          |
| $C' \leftarrow \{x \cup \{X_i : v\} : x \in C, v \in Domain_i\}$ |
| Prune:                                                           |
| $C \leftarrow K$ elements of $C'$ with highest weights           |

Not guaranteed to find maximum weight assignment!

[demo: beamSearch({K:3})]







- Beam size K controls tradeoff between efficiency and accuracy
  - K = 1 is greedy search (O(nb) time)
  - $K = \infty$  is BFS ( $O(b^n)$  time)

Backtracking search : DFS :: beam search : pruned BFS

### Search strategies

Backtracking/beam search: extend partial assignments



Local search: modify complete assignments





### Example: object tracking



[demo]

## One small step



Old assignment: (0, 0, 1); how to improve?

$$\begin{array}{ll} (x_1, {\boldsymbol v}, x_3) & \text{weight} \\ (0, 0, 1) & 2 \cdot 2 \cdot 0 \cdot 1 \cdot 1 = 0 \\ (0, 1, 1) & 2 \cdot 1 \cdot 1 \cdot 2 \cdot 1 = 4 \\ (0, 2, 1) & 2 \cdot 0 \cdot 2 \cdot 1 \cdot 1 = 0 \end{array}$$

New assignment: (0, 1, 1)

# Exploiting locality



Weight of new assignment  $(x_1, \boldsymbol{v}, x_3)$ :

 $o_1(x_1)t_1(x_1,v)o_2(v)t_2(v,x_3)o_3(x_3)$ 

**Key idea:** locality When evaluating possible re-assignments to  $X_i$ , only need to consider the factors that depend on  $X_i$ .

# Iterated conditional modes (ICM)

#### Algorithm: iterated conditional modes (ICM)<sub>7</sub>

Initialize x to a random complete assignment Loop through i = 1, ..., n until convergence: Compute weight of  $x_v = x \cup \{X_i : v\}$  for each v $x \leftarrow x_v$  with highest weight



[demo: iteratedConditionalModes()]

# **Convergence** properties

- Weight(x) increases or stays the same each iteration
- Converges in a finite number of iterations
- Can get stuck in local optima
- Not guaranteed to find optimal assignment!









| Algorithm           | Strategy                    | Optimality  | Time complexity |
|---------------------|-----------------------------|-------------|-----------------|
| Backtracking search | extend partial assignments  | exact       | exponential     |
| Beam search         | extend partial assignments  | approximate | linear          |
| Local search (ICM)  | modify complete assignments | approximate | linear          |

## Course plan



**Machine learning** 

## Definition

#### Definition: Markov network-

A Markov network is a factor graph which defines a joint distribution over random variables  $X = (X_1, \ldots, X_n)$ :

$$\mathbb{P}(X = x) = \frac{\mathsf{Weight}(x)}{Z}$$

where  $Z = \sum_{x'} \text{Weight}(x')$  is the normalization constant.

| $x_1$ | $x_2$ | $x_3$ | Weight(x) | $\mathbb{P}(X=x)$ |
|-------|-------|-------|-----------|-------------------|
| 0     | 1     | 1     | 4         | 0.15              |
| 0     | 1     | 2     | 4         | 0.15              |
| 1     | 1     | 1     | 4         | 0.15              |
| 1     | 1     | 2     | 4         | 0.15              |
| 1     | 2     | 1     | 2         | 0.08              |
| 1     | 2     | 2     | 8         | 0.31              |
|       |       |       |           |                   |

$$Z = 4 + 4 + 4 + 4 + 2 + 8 = 26$$

Represents uncertainty!

### Marginal probabilities

Example question: where was the object at time step 2  $(X_2)$ ?

**Definition: Marginal probability** The marginal probability of  $X_i = v$  is given by:  $\mathbb{P}(X_i = v) = \sum_{x:x_i=v} \mathbb{P}(X = x)$ 

#### Object tracking example:

| $x_1$ | $x_2$ | $x_3$ | Weight(x) | $\mathbb{P}(X=x)$ |
|-------|-------|-------|-----------|-------------------|
| 0     | 1     | 1     | 4         | 0.15              |
| 0     | 1     | 2     | 4         | 0.15              |
| 1     | 1     | 1     | 4         | 0.15              |
| 1     | 1     | 2     | 4         | 0.15              |
| 1     | 2     | 1     | 2         | 0.08              |
| 1     | 2     | 2     | 8         | 0.31              |
|       |       |       |           |                   |

 $\mathbb{P}(X_2 = 1) = 0.15 + 0.15 + 0.15 + 0.15 = 0.62$  $\mathbb{P}(X_2 = 2) = 0.08 + 0.31 = 0.38$ Note: different than max weight assignment!




Markov networks = factor graphs + probability

- Normalize weights to get probablity distribution
- Can compute marginal probabilities to focus on variables

| CSPs                      | Markov networks        |
|---------------------------|------------------------|
| variables                 | random variables       |
| weights                   | probabilities          |
| maximum weight assignment | marginal probabilities |

# Gibbs sampling



[demo]

# Search versus sampling

| Iterated Conditional Modes | Gibbs sampling                        |
|----------------------------|---------------------------------------|
| maximum weight assignment  | marginal probabilities                |
| choose best value          | sample a value                        |
| converges to local optimum | marginals converge to correct answer* |

\*under technical conditions (sufficient condition: all weights positive), but could take exponential time









- Objective: compute marginal probabilities  $\mathbb{P}(X_i = x_i)$
- Gibbs sampling: sample one variable at a time, count visitations
- More generally: Markov chain Monte Carlo (MCMC) powerful toolkit of randomized procedures

# Course plan



**Machine learning** 

### Markov networks versus Bayesian networks

Both define a joint probability distribution over assignments





| Markov networks    | Bayesian networks               |
|--------------------|---------------------------------|
| arbitrary factors  | local conditional probabilities |
| set of preferences | generative process              |



# Review: probability

**Random variables**: sunshine  $S \in \{0, 1\}$ , rain  $R \in \{0, 1\}$ 

**Joint distribution** (probabilistic database):

|          | $s \ r \ \mathbb{I}$ | $\mathbb{P}(S=s,R=r)$ |
|----------|----------------------|-----------------------|
|          | 00                   | 0.20                  |
| (S, R) = | 01                   | 0.08                  |
|          | 10                   | 0.70                  |
|          | 11                   | 0.02                  |
|          |                      |                       |

#### Marginal distribution:

 $\mathbb{P}$ 

 $\begin{pmatrix} \text{aggregate rows} \end{pmatrix} \\
\mathbb{P}(S) = \begin{vmatrix} s & \mathbb{P}(S = s) \\ 0 & 0.28 \\ 1 & 0.72 \end{vmatrix}$ 

#### **Conditional distribution**:

(select rows, normalize)  $\mathbb{P}(S \mid R = 1) = \begin{bmatrix} s \ \mathbb{P}(S = s \mid R = 1) \\ 0 & 0.8 \\ 1 & 0.2 \end{bmatrix}$ 

# Bayesian network (definition)



#### Definition: Bayesian network-

Let  $X = (X_1, \ldots, X_n)$  be random variables.

A **Bayesian network** is a directed acyclic graph (DAG) that specifies a joint distribution over X as a product of local conditional distributions, one for each node:

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) \stackrel{\mathsf{def}}{=} \prod_{i=1}^n p(x_i \mid x_{\mathsf{Parents}(i)})$$

# Probabilistic inference (definition)





Example: if coughing and itchy eyes, have a cold?

$$\mathbb{P}(C \mid H = 1, I = 1)$$



# Bayesian network (alarm)



$$p(b) = \epsilon \cdot [b = 1] + (1 - \epsilon) \cdot [b = 0]$$
  

$$p(e) = \epsilon \cdot [e = 1] + (1 - \epsilon) \cdot [e = 0]$$
  

$$p(a \mid b, e) = [a = (b \lor e)]$$
  

$$\mathbb{P}(B = b, E = e, A = a) \stackrel{\text{def}}{=} p(b)p(e)p(a \mid b, e)$$

CS221



# Explaining away





Suppose two causes positively influence an effect. Conditioned on the effect, further conditioning on one cause reduces the probability of the other cause.

$$\mathbb{P}(B = 1 \mid A = 1, E = 1) < \mathbb{P}(B = 1 \mid A = 1)$$

Note: happens even if causes are independent!







- Random variables capture state of world
- Directed edges between variables represent dependencies
- Local conditional distributions  $\Rightarrow$  joint distribution
- Probabilistic inference: ask questions about world
- Captures reasoning patterns (e.g., explaining away)

# Probabilistic programs



- Y Key idea: probabilistic program A randomized program that sets the random variables.

### Reduction to Markov networks



Reminder: single factor that connects all parents!

# Conditioning on evidence



Markov network:

$$\mathbb{P}(C = c, A = a \mid H = 1, I = 1) = \frac{1}{Z}p(c)p(a)p(h = 1 \mid c, a)p(i = 1 \mid a)$$

Bayesian network with evidence = Markov network with  $Z = \mathbb{P}(H = 1, I = 1)$ 

Solution: run any inference algorithm for Markov networks (e.g., Gibbs sampling)! [demo]

## Leveraging additional structure: unobserved leaves



Markov network:

$$\mathbb{P}(C = c, A = a, I = i \mid H = 1) = \frac{1}{Z}p(c)p(a)p(h = 1 \mid c, a)p(i \mid a),$$
  
where  $Z = \mathbb{P}(H = 1)$ 

#### Question: $\mathbb{P}(C = 1 \mid H = 1)$

Can we reduce the Markov network before running inference?

## Leveraging additional structure: unobserved leaves



Markov network:

$$\begin{split} \mathbb{P}(C = c, A = a \mid H = 1) &= \sum_{i} \mathbb{P}(C = c, A = a, I = i \mid H = 1) \\ &= \sum_{i} \frac{1}{Z} p(c) p(a) p(h = 1 \mid c, a) p(i \mid a) \\ &= \frac{1}{Z} p(c) p(a) p(h = 1 \mid c, a) \sum_{i} p(i \mid a) \\ &= \frac{1}{Z} p(c) p(a) p(h = 1 \mid c, a) \end{split}$$

Throw away any unobserved leaves before running inference!

## Leveraging additional structure: independence



Markov network:

$$\mathbb{P}(\mathbf{C} = \mathbf{c} \mid I = 1) = \sum_{a,h} \mathbb{P}(\mathbf{C} = \mathbf{c}, A = a, H = h \mid I = 1)$$
$$= \sum_{a,h} \frac{1}{Z} p(\mathbf{c}) p(a) p(h \mid \mathbf{c}, a) p(i = 1 \mid a)$$
$$= \sum_{a} \frac{1}{Z} p(\mathbf{c}) p(a) p(i = 1 \mid a)$$
$$= p(\mathbf{c}) \sum_{a} \frac{1}{Z} p(a) p(i = 1 \mid a)$$
$$= p(\mathbf{c})$$

Throw away any disconnected components before running inference!







- Condition on evidence (e.g., I = 1)
- Throw away unobserved leaves (e.g., H)
- Throw away disconnected components (e.g., A and I)
- Define Markov network out of remaining factors
- Run your favorite inference algorithm (e.g., manual, Gibbs sampling)

# Inference questions



Question (**filtering**):

$$\mathbb{P}(H_2 \mid E_1 = 0, E_2 = 2)$$

Question (**smoothing**):

 $\mathbb{P}(H_2 \mid E_1 = 0, E_2 = 2, E_3 = 2)$ 

Note: filtering is a special case of smoothing if marginalize unobserved leaves

#### Lattice representation



- Edge start  $\Rightarrow$   $H_1 = h_1$  has weight  $p(h_1)p(e_1 \mid h_1)$
- Edge  $H_{i-1} = h_{i-1} \Rightarrow H_i = h_i$  has weight  $p(h_i \mid h_{i-1})p(e_i \mid h_i)$
- Each path from start to end is an assignment with weight equal to the product of edge weights

Key:  $\mathbb{P}(H_i = h_i \mid E = e)$  is the weighted fraction of paths through  $|H_i = h_i|$ 

## Forward and backward messages



# Putting everything together



Running time:  $O(n|\text{Domain}|^2)$ 

[demo]

## Review: inference in Hidden Markov models



#### Filtering questions:

$$\mathbb{P}(H_1 \mid E_1 = 0)$$
  

$$\mathbb{P}(H_2 \mid E_1 = 0, E_2 = 2)$$
  

$$\mathbb{P}(H_3 \mid E_1 = 0, E_2 = 2, E_3 = 2)$$

**Problem**: many possible location values for  $H_i$ 



Forward-backward is too slow  $(O(n|Domain|^2))...$ 

# Why sampling?





not representative

#### K with highest weight K sampled from distribution



more representative

Sampling is especially important when there is high uncertainty!

# Particle filtering

#### Algorithm: particle filtering-Initialize $C \leftarrow [\{\}]$ For each $i = 1, \ldots, n$ : Propose: $C' \leftarrow \{h \cup \{H_i : h_i\} : h \in C, h_i \sim p(h_i \mid h_{i-1})\}$ Weight: Compute weights $w(h) = p(e_i \mid h_i)$ for $h \in C'$ Resample: $C \leftarrow K$ particles drawn independently from $\frac{w(h)}{\sum_{h' \in C} w(h')}$

[demo: particleFiltering({K:100})]

# Step 1: propose

Old particles:  $\approx \mathbb{P}(H_1, H_2 \mid E_1 = 0, E_2 = 2)$ 

 $\{H_1: 0, H_2: 1\} \\ \{H_1: 1, H_2: 2\}$ 



New particles:  $\approx \mathbb{P}(H_1, H_2, H_3 | E_1 = 0, E_2 = 2)$ 

 $\{H_1: 0, H_2: 1, H_3: 1\}$  $\{H_1: 1, H_2: 2, H_3: 2\}$ 

# Step 2: weight

Old particles:  $\approx \mathbb{P}(H_1, H_2, H_3 \mid E_1 = 0, E_2 = 1)$ 

 $\{H_1: 0, H_2: 1: H_3: 1\}$  $\{H_1: 1, H_2: 2: H_3: 2\}$ 

For each old particle  $(h_1, h_2, h_3)$ , weight it by  $p(e_3 = 2 \mid h_3)$ .



New particles:  $\approx \mathbb{P}(H_1, H_2, H_3 \mid E_1 = 0, E_2 = 1, E_3 = 2)$ 

{ $H_1: 0, H_2: 1: H_3: 1$ } (1/4) { $H_1: 1, H_2: 2: H_3: 2$ } (1/2)

## Step 3: resample

```
Old particles: \approx \mathbb{P}(H_1, H_2, H_3 \mid E_1 = 0, E_2 = 2, E_3 = 2)
```

```
 \{H_1: 0, H_2: 1: H_3: 1\} (1/4) \Rightarrow 1/3 
 \{H_1: 1, H_2: 2: H_3: 2\} (1/2) \Rightarrow 2/3 

Key idea: resampling

Normalize weights and draw K samples to redistribute particles to more promising areas.
```

```
New particles: \approx \mathbb{P}(H_1, H_2, H_3 \mid E_1 = 0, E_2 = 2, E_3 = 2)
```

 $\{H_1: 1, H_2: 2: H_3: 2\}$  $\{H_1: 1, H_2: 2: H_3: 2\}$ 









$$\mathbb{P}(H_3 \mid E_1 = 0, E_2 = 2, E_3 = 2)$$

• Use particles to represent an approximate distribution

| <b>Propose</b> (transitions) | Weight (emissions) | Resample |
|------------------------------|--------------------|----------|
|                              |                    | Resumple |

- Can scale to large number of locations (unlike forward-backward)
- Maintains better particle diversity (compared to beam search)

# Where do parameters come from?



| c p(c) | a | p(a) |
|--------|---|------|
| 1 ?    | 1 | ?    |
| 0 ?    | 0 | ?    |

| c | a | h | $p(h \mid c, a)$ |
|---|---|---|------------------|
| 0 | 0 | 0 | ?                |
| 0 | 0 | 1 | ?                |
| 0 | 1 | 0 | ?                |
| 0 | 1 | 1 | ?                |
| 1 | 0 | 0 | ?                |
| 1 | 0 | 1 | ?                |
| 1 | 1 | 0 | ?                |
| 1 | 1 | 1 | ?                |

| a | i | p(i | a) |
|---|---|-----|----|
| 0 | 0 | ?   |    |
| 0 | 1 | ?   |    |
| 1 | 0 | ?   |    |
| 1 | 1 | ?   |    |
|   |   |     |    |

## Learning task

**Training data-**

 $\mathcal{D}_{train}$  (an example is an assignment to X)

#### **Parameters**-

 $\theta$  (local conditional probabilities)

# Parameter sharing

#### Key idea: parameter sharing-

The local conditional distributions of different variables can share the same parameters.



Impact: more reliable estimates, less expressive model

#### General case

Bayesian network: variables  $X_1, \ldots, X_n$ 

Parameters: collection of distributions  $\theta = \{p_d : d \in D\}$  (e.g.,  $D = \{\text{start}, \text{trans}, \text{emit}\}$ )

Each variable  $X_i$  is generated from distribution  $p_{d_i}$ :

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1}^n p_{d_i}(x_i \mid x_{\mathsf{Parents}(i)})$$

Parameter sharing:  $d_i$  could be same for multiple i

## General case: learning algorithm

Input: training examples  $\mathcal{D}_{\mathsf{train}}$  of full assignments

```
Output: parameters \theta = \{p_d : d \in D\}
```

```
Algorithm: count and normalize

Count:

For each x \in D_{train}:

For each variable x_i:

Increment count_{d_i}(x_{Parents(i)}, x_i)

Normalize:

For each d and local assignment x_{Parents(i)}:

Set p_d(x_i \mid x_{Parents(i)}) \propto \text{count}_d(x_{Parents(i)}, x_i)
```

## Maximum likelihood

Maximum likelihood objective:

```
\max_{\theta} \prod_{x \in \mathcal{D}_{\mathsf{train}}} \mathbb{P}(X = x; \theta)
```



Closed form — no iterative optimization!
### Review: maximum likelihood

 $\mathcal{D}_{\mathsf{train}} = \{(\mathsf{d},4), (\mathsf{d},4), (\mathsf{d},5), (\mathsf{c},1), (\mathsf{c},5)\}$ 

|   |   |              |          | g | r | $count_R(g,r)$ | $p_R(r \mid g)$ |
|---|---|--------------|----------|---|---|----------------|-----------------|
|   | g | $count_G(g)$ | $p_G(g)$ | d | 4 | 2              | 2/3             |
| : | d | 3            | 3/5      | d | 5 | 1              | 1/3             |
|   | С | 2            | 2/5      | с | 1 | 1              | 1/2             |
|   |   |              |          | с | 5 | 1              | 1/2             |

Do we really believe that  $p_R(r = 2 \mid g = c) = 0$ ?

Overfitting!

# Laplace smoothing

Key idea: maximum likelihood with Laplace smoothing-

For each distribution d and partial assignment  $(x_{Parents(i)}, x_i)$ :

Add  $\lambda$  to count<sub>d</sub>( $x_{\text{Parents}(i)}, x_i$ ).

Further increment counts  $\{\text{count}_d\}$  based on  $\mathcal{D}_{\text{train}}$ .

Hallucinate  $\lambda$  occurrences of each local assignment

### Interplay between smoothing and data

Larger  $\lambda \Rightarrow$  more smoothing  $\Rightarrow$  probabilities closer to uniform

| g | $count_G(g)$ | $p_G(g)$ | g | $count_G(g)$ | $p_G(g)$ |
|---|--------------|----------|---|--------------|----------|
| d | 1/2+1        | 3/4      | d | <b>1</b> +1  | 2/3      |
| С | 1/2          | 1/4      | С | 1            | 1/3      |

Data wins out in the end (suppose only see g = d):

| g | $count_G(g)$ | $p_G(g)$ | g | $count_G(g)$  | $p_G(g)$ |
|---|--------------|----------|---|---------------|----------|
| d | <b>1</b> +1  | 2/3      | d | <b>1</b> +998 | 0.999    |
| С | 1            | 1/3      | С | 1             | 0.001    |

# Motivation



Genre  $G \in \{ drama, comedy \}$ Jim's rating  $R_1 \in \{1, 2, 3, 4, 5\}$ Martha's rating  $R_2 \in \{1, 2, 3, 4, 5\}$ 

If observe all the variables: maximum likelihood = count and normalize

$$\mathcal{D}_{\mathsf{train}} = \{(\mathsf{d}, 4, 5), (\mathsf{d}, 4, 4), (\mathsf{d}, 5, 3), (\mathsf{c}, 1, 2), (\mathsf{c}, 5, 4)\}$$

What if we **don't observe** some of the variables?

$$\mathcal{D}_{\mathsf{train}} = \{(?, 4, 5), (?, 4, 4), (?, 5, 3), (?, 1, 2), (?, 5, 4)\}$$

# Expectation Maximization (EM)

Intuition: generalization of the K-means algorithm

```
cluster centroids = parameters \theta cluster assignments = hidden variables H
```

```
Variables: H is hidden, E = e is observed
```



Maximum likelihood (count and normalize) on weighted examples to get  $\theta$ 



# Summary



Maximum marginal likelihood: max  $\prod \mathbb{P}(E = e; \theta)$ 

 $\max_{\theta} \prod_{e \in \mathcal{D}_{\text{train}}} \mathbb{P}(E = e; \theta)$ 

EM algorithm:

← probabilistic inference (E-step)

hidden variables q(h)



parameters  $\theta$ 

count and normalize (M-step)  $\Rightarrow$ 

Applications: decipherment, phylogenetic reconstruction, crowdsourcing

# Course plan



#### Machine learning

# Modeling paradigms

State-based models: search problems, MDPs, games

Applications: route finding, game playing, etc. *Think in terms of* **states, actions, and costs** 

Variable-based models: CSPs, Bayesian networks

Applications: scheduling, tracking, medical diagnosis, etc. *Think in terms of* variables and factors

Logic-based models: propositional logic, first-order logic

Applications: theorem proving, verification, reasoning Think in terms of logical formulas and inference rules



# Natural language

#### Example:

- A **dime** is better than a **nickel**.
- A nickel is better than a penny.
- Therefore, a **dime** is better than a **penny**.

Example:

- A penny is better than nothing.
- Nothing is better than world peace.
- Therefore, a **penny** is better than **world peace**???

Natural language is slippery...

# Two goals of a logic language

• **Represent** knowledge about the world



• **Reason** with that knowledge



# Ingredients of a logic

**Syntax**: defines a set of valid **formulas** (Formulas)

Example: Rain  $\land$  Wet

**Semantics**: for each formula, specify a set of **models** (assignments / configurations of the world)



**Inference rules**: given f, what new formulas g can be added that are guaranteed to follow  $(\frac{f}{g})$ ?

Example: from Rain  $\land$  Wet, derive Rain

## Syntax versus semantics

Syntax: what are valid expressions in the language?

Semantics: what do these expressions mean?

Different syntax, same semantics (5):

 $2 + 3 \Leftrightarrow 3 + 2$ 

Same syntax, different semantics (1 versus 1.5):

3 / 2 (Python 2.7)  $\Leftrightarrow 3 / 2$  (Python 3)

# Propositional logic



# Logics

- Propositional logic with only Horn clauses
- Propositional logic
- Modal logic
- First-order logic with only Horn clauses
- First-order logic
- Second-order logic

```
Key idea: tradeoff
Balance expressivity and computational efficiency.
```

. . .

# Syntax of propositional logic

Propositional symbols (atomic formulas): A, B, C

Logical connectives:  $\neg, \land, \lor, \rightarrow, \leftrightarrow$ 

Build up formulas recursively—if f and g are formulas, so are the following:

- Negation:  $\neg f$
- Conjunction:  $f \wedge g$
- Disjunction:  $f \lor g$
- Implication:  $f \to g$
- Biconditional:  $f \leftrightarrow g$

# Syntax of propositional logic





# Model



A **model** w in propositional logic is an **assignment** of truth values to propositional symbols.

Example:

- 3 propositional symbols: A, B, C
- $2^3 = 8$  possible models w:

 $\{A:0,B:0,C:0\} \\ \{A:0,B:0,C:1\} \\ \{A:0,B:1,C:0\} \\ \{A:0,B:1,C:1\} \\ \{A:1,B:0,C:0\} \\ \{A:1,B:0,C:1\} \\ \{A:1,B:1,C:0\} \\ \{A:1,B:1,C:1\} \\ \{A:1,B:1,C:1\} \}$ 

# Interpretation function



### **Definition: interpretation function-**

Let f be a formula.

Let w be a model.

An interpretation function  $\mathcal{I}(f, w)$  returns:

- true (1) (say that w satisfies f)
- false (0) (say that w does not satisfy f)



### Interpretation function: example



### Formula represents a set of models

So far: each formula f and model w has an interpretation  $\mathcal{I}(f, w) \in \{0, 1\}$ 



Let  $\mathcal{M}(f)$  be the set of **models** w for which  $\mathcal{I}(f, w) = 1$ .



### Models: example

#### Formula:

 $f = \mathsf{Rain} \lor \mathsf{Wet}$ 

#### **Models:**



# Knowledge base

### Definition: Knowledge base-

A **knowledge base** KB is a set of formulas representing their conjunction / intersection:

$$\mathcal{M}(\mathsf{KB}) = \bigcap_{f \in \mathsf{KB}} \mathcal{M}(f).$$

Intuition: KB specifies constraints on the world.  $\mathcal{M}(\text{KB})$  is the set of all worlds satisfying those constraints.

Let  $KB = \{Rain \lor Snow, Traffic\}.$ 



# Adding to the knowledge base

Adding more formulas to the knowledge base:



Shrinks the set of models:



How much does  $\mathcal{M}(\textbf{KB})$  shrink?

[whiteboard]

### Entailment



Intuition: f added no information/constraints (it was already known).



**Example**: Rain  $\land$  Snow  $\models$  Snow

### Contradiction



Intuition: f contradicts what we know (captured in KB).

**Definition: contradiction** KB contradicts f iff  $\mathcal{M}(KB) \cap \mathcal{M}(f) = \emptyset$ .

**Example**: Rain  $\land$  Snow contradicts  $\neg$ Snow

## Contradiction and entailment





#### Entailment:



**Proposition: contradiction and entailment**<sub>7</sub>

KB contradicts f iff KB entails  $\neg f$ .

# Contingency



Intuition: f adds non-trivial information to KB

 $\emptyset \subsetneq \mathcal{M}(\mathsf{KB}) \cap \mathcal{M}(f) \subsetneq \mathcal{M}(\mathsf{KB})$ 

Example: Rain and Snow

# Satisfiability

### Definition: satisfiability-

A knowledge base KB is **satisfiable** if  $\mathcal{M}(KB) \neq \emptyset$ .

Reduce Ask[f] and Tell[f] to satisfiability:



# Model checking

Checking satisfiability (SAT) in propositional logic is special case of solving CSPs!

#### Mapping:

| propositional symbol | $\Rightarrow$ | variable   |
|----------------------|---------------|------------|
| formula              | $\Rightarrow$ | constraint |
| model                | $\Leftarrow$  | assignment |

# Model checking

Example: model checking- $\mathsf{KB} = \{A \lor B, B \leftrightarrow \neg C\}$ Propositional symbols (CSP variables):  $\{A, B, C\}$ CSP:  $A \lor B$  $B \leftrightarrow \neg C$ В Α Consistent assignment (satisfying model):  ${A:1, B:0, C:1}$ 

# **Propositional logic**



### Inference rules

Example of making an inference:

It is raining. (Rain) If it is raining, then it is wet. (Rain  $\rightarrow$  Wet) Therefore, it is wet. (Wet)



## Inference framework



**Wey idea: inference rules** Rules operate directly on **syntax**, not on **semantics**.

# Inference algorithm

Algorithm: forward inference-

Input: set of inference rules Rules. Repeat until no changes to KB: Choose set of formulas  $f_1, \ldots, f_k \in KB$ . If matching rule  $\frac{f_1, \ldots, f_k}{g}$  exists: Add g to KB.

Definition: derivation

KB derives/proves f (KB  $\vdash$  f) iff f eventually gets added to KB.

## Desiderata for inference rules

#### **Semantics**

Interpretation defines **entailed/true** formulas:  $KB \models f$ :



#### Syntax:

Inference rules **derive** formulas:  $KB \vdash f$ 

```
How does \{f : \mathsf{KB} \models f\} relate to \{f : \mathsf{KB} \vdash f\}?
```

# Truth



$$\{f: \mathsf{KB} \models f\}$$












## Soundness and completeness

The truth, the whole truth, and nothing but the truth.

- **Soundness**: nothing but the truth
- **Completeness**: whole truth

## Completeness: example

Recall completeness: inference rules derive all entailed formulas (f such that  $KB \models f$ )

```
Example: Modus ponens is incomplete
Setup:
     \mathsf{KB} = \{\mathsf{Rain}, \mathsf{Rain} \lor \mathsf{Snow} \to \mathsf{Wet}\}
     f = Wet
     \mathsf{Rules} = \left\{ \frac{f, \quad f \to g}{q} \right\} \text{ (Modus ponens)}
Semantically: KB \models f (f is entailed).
Syntactically: KB \not\vdash f (can't derive f).
                    Incomplete!
```

# Fixing completeness

Option 1: Restrict the allowed set of formulas



## Definite clauses

**• Definition: Definite clause** A **definite clause** has the following form:  $(p_1 \land \dots \land p_k) \rightarrow q$ where  $p_1, \dots, p_k, q$  are propositional symbols.

Intuition: if  $p_1, \ldots, p_k$  hold, then q holds. Example: (Rain  $\land$  Snow)  $\rightarrow$  Traffic Example: Traffic Non-example:  $\neg$ Traffic Non-example: (Rain  $\land$  Snow)  $\rightarrow$  (Traffic  $\lor$  Peaceful)

### Horn clauses



A Horn clause is either:

- a definite clause  $(p_1 \land \cdots \land p_k \rightarrow q)$
- a goal clause  $(p_1 \land \cdots \land p_k \rightarrow \mathsf{false})$

#### Example (definite): $(Rain \land Snow) \rightarrow Traffic$

Example (goal): Traffic  $\land$  Accident  $\rightarrow$  false

equivalent:  $\neg(\mathsf{Traffic} \land \mathsf{Accident})$ 

## Modus ponens

#### Inference rule:



#### Example:

## Completeness of modus ponens

#### Theorem: Modus ponens on Horn clauses-

Modus ponens is **complete** with respect to Horn clauses:

- Suppose KB contains only Horn clauses and p is an entailed propositional symbol.
- Then applying modus ponens will derive *p*.

#### Upshot:

### $\mathsf{KB} \models p$ (entailment) is the same as $\mathsf{KB} \vdash p$ (derivation)!

# Resolution [Robinson, 1965]

General clauses have any number of literals:

 $\neg A \lor B \lor \neg C \lor D \lor \neg E \lor F$  **Example: resolution inference rule**  $\frac{\text{Rain} \lor \text{Snow}, \quad \neg \text{Snow} \lor \text{Traffic}}{\text{Rain} \lor \text{Traffic}}$ 

**Definition: resolution inference rule**  
$$\frac{f_1 \lor \cdots \lor f_n \lor p, \quad \neg p \lor g_1 \lor \cdots \lor g_m}{f_1 \lor \cdots \lor f_n \lor g_1 \lor \cdots \lor g_m}$$

# Conjunctive normal form

So far: resolution only works on clauses...but that's enough!

Conjunctive normal form (CNF) Conjunctive normal form (CNF)

A CNF formula is a conjunction of clauses.

**Example:**  $(A \lor B \lor \neg C) \land (\neg B \lor D)$ 

Equivalent: knowledge base where each formula is a clause



Every formula f in propositional logic can be converted into an equivalent CNF formula f':

$$\mathcal{M}(f) = \mathcal{M}(f')$$

## Conversion to CNF: general

#### Conversion rules:

- Eliminate  $\leftrightarrow$ :  $\frac{f \leftrightarrow g}{(f \rightarrow g) \land (g \rightarrow f)}$
- Eliminate  $\rightarrow$ :  $\frac{f \rightarrow g}{\neg f \lor g}$
- Move  $\neg$  inwards:  $\frac{\neg (f \land g)}{\neg f \lor \neg g}$
- Move  $\neg$  inwards:  $\frac{\neg (f \lor g)}{\neg f \land \neg g}$
- Eliminate double negation:  $\frac{\neg \neg f}{f}$
- Distribute  $\lor$  over  $\land$ :  $\frac{f \lor (g \land h)}{(f \lor g) \land (f \lor h)}$

# Resolution algorithm

Recall: relationship between entailment and contradiction (basically "proof by contradiction")

 $\mathsf{KB} \models f \qquad \longleftarrow \qquad \mathsf{KB} \cup \{\neg f\} \text{ is unsatisfiable}$ 



Algorithm: resolution-based inference-

- Add  $\neg f$  into KB.
- Convert all formulas into **CNF**.
- Repeatedly apply resolution rule.
- Return entailment iff derive false.

## Resolution: example

$$\mathsf{KB}' = \{A \to (B \lor C), A, \neg B, \neg C\}$$

Convert to CNF:

 $\mathsf{KB}' = \{\neg A \lor B \lor C, A, \neg B, \neg C\}$ 

Repeatedly apply **resolution** rule:



# Limitations of propositional logic

#### All students know arithmetic.

```
AliceIsStudent \rightarrow AliceKnowsArithmetic
```

 $\mathsf{BobIsStudent} \to \mathsf{BobKnowsArithmetic}$ 

Propositional logic is very clunky. What's missing?

- Objects and predicates: propositions (e.g., AliceKnowsArithmetic) have more internal structure (alice, Knows, arithmetic)
- Quantifiers and variables: *all* is a quantifier which applies to each person, don't want to enumerate them all...

. . .

## First-order logic: examples

Alice and Bob both know arithmetic.

#### Knows(alice, arithmetic) $\land$ Knows(bob, arithmetic)

All students know arithmetic.

 $\forall x \operatorname{Student}(x) \rightarrow \operatorname{Knows}(x, \operatorname{arithmetic})$ 

# Syntax of first-order logic

Terms (refer to objects):

- Constant symbol (e.g., arithmetic)
- Variable (e.g., x)
- Function of terms (e.g., Sum(3, x))

#### Formulas (refer to truth values):

- Atomic formulas (atoms): predicate applied to terms (e.g., Knows(x, arithmetic))
- Connectives applied to formulas (e.g.,  $Student(x) \rightarrow Knows(x, arithmetic)$ )
- Quantifiers applied to formulas (e.g.,  $\forall x \operatorname{Student}(x) \to \operatorname{Knows}(x, \operatorname{arithmetic})$ )

# Quantifiers

### Universal quantification $(\forall)$ :

```
Think conjunction: \forall x P(x) is like P(A) \land P(B) \land \cdots
```

### Existential quantification $(\exists)$ :

Think disjunction:  $\exists x P(x)$  is like  $P(A) \lor P(B) \lor \cdots$ 

#### Some properties:

- $\neg \forall x P(x)$  equivalent to  $\exists x \neg P(x)$
- $\forall x \exists y \operatorname{Knows}(x, y)$  different from  $\exists y \forall x \operatorname{Knows}(x, y)$

# Natural language quantifiers

Universal quantification ( $\forall$ ):

Every student knows arithmetic.

 $\forall x \operatorname{Student}(x) \rightarrow \operatorname{Knows}(x, \operatorname{arithmetic})$ 

Existential quantification  $(\exists)$ :

Some student knows arithmetic.

 $\exists x \operatorname{Student}(x) \land \operatorname{Knows}(x, \operatorname{arithmetic})$ 

Note the different connectives!

# Models in first-order logic



### Definition: model in first-order logic-

A model w in first-order logic maps:

• constant symbols to objects

 $w(alice) = o_1, w(bob) = o_2, w(arithmetic) = o_3$ 

• predicate symbols to tuples of objects

 $w(Knows) = \{(o_1, o_3), (o_2, o_3), \dots\}$ 

# Graph representation of a model

If only have unary and binary predicates, a model w can be represented as a directed graph:



- Nodes are objects, labeled with constant symbols
- Directed edges are binary predicates, labeled with predicate symbols; unary predicates are additional node labels

# A restriction on models

John and Bob are students.

### $\mathsf{Student}(\mathsf{john}) \land \mathsf{Student}(\mathsf{bob})$



- Unique names assumption: Each object has at most one constant symbol. This rules out  $w_2$ .
- Domain closure: Each object has **at least one** constant symbol. This rules out  $w_3$ . Point:

constant symbol



## Propositionalization

If one-to-one mapping between constant symbols and objects (unique names and domain closure),

first-order logic is syntactic sugar for propositional logic:

Knowledge base in first-order logic Student(alice)  $\land$  Student(bob)  $\forall x$  Student(x)  $\rightarrow$  Person(x)  $\exists x$  Student(x)  $\land$  Creative(x)

**Knowledge base in propositional logic-**

 $\begin{array}{l} \mathsf{Studentalice} \land \mathsf{Studentbob} \\ (\mathsf{Studentalice} \rightarrow \mathsf{Personalice}) \land (\mathsf{Studentbob} \rightarrow \mathsf{Personbob}) \\ (\mathsf{Studentalice} \land \mathsf{Creativealice}) \lor (\mathsf{Studentbob} \land \mathsf{Creativebob}) \end{array}$ 

Point: use any inference algorithm for propositional logic!

## Substitution

 $\mathsf{Subst}[\{x/\mathsf{alice}\}, P(x)] = P(\mathsf{alice})$ 

```
\mathsf{Subst}[\{x/\mathsf{alice}, y/z\}, P(x) \land K(x, y)] = P(\mathsf{alice}) \land K(\mathsf{alice}, z)
```



#### **Definition:** Substitution-

A substitution  $\theta$  is a mapping from variables to terms.

Subst $[\theta, f]$  returns the result of performing substitution  $\theta$  on f.

# Unification

```
Unify[Knows(alice, arithmetic), Knows(x, arithmetic)] = {x/alice}
```

```
\mathsf{Unify}[\mathsf{Knows}(\mathsf{alice}, y), \mathsf{Knows}(x, z)] = \{x/\mathsf{alice}, y/z\}
```

```
\mathsf{Unify}[\mathsf{Knows}(\mathsf{alice}, y), \mathsf{Knows}(\mathsf{bob}, z)] = \mathsf{fail}
```

 $\mathsf{Unify}[\mathsf{Knows}(\mathsf{alice}, y), \mathsf{Knows}(x, F(x))] = \{x/\mathsf{alice}, y/F(\mathsf{alice})\}$ 



Unification takes two formulas f and g and returns a substitution  $\theta$  which is the most general unifier:

```
\mathsf{Unify}[f,g] = \theta such that \mathsf{Subst}[\theta,f] = \mathsf{Subst}[\theta,g]
```

or "fail" if no such  $\theta$  exists.

## Modus ponens



Get most general unifier  $\theta$  on premises:

•  $\theta = \text{Unify}[a'_1 \wedge \cdots \wedge a'_k, a_1 \wedge \cdots \wedge a_k]$ 

Apply  $\theta$  to conclusion:

• Subst $[\theta, b] = b'$ 



#### **Theorem: completeness-**

Modus ponens is complete for first-order logic with only Horn clauses.

### Theorem: semi-decidability-

First-order logic (even restricted to only Horn clauses) is semi-decidable.

- If  $KB \models f$ , forward inference on complete inference rules will prove f in finite time.
- If  $KB \not\models f$ , no algorithm can show this in finite time.