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Variable-based models

Special cases:

• Constraint satisfaction problems

• Markov networks

• Bayesian networks

Key idea: variables

• Solutions to problems ) assignments to variables (modeling).

• Decisions about variable ordering, etc. chosen by inference.

Higher-level modeling language than state-based models
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Factor graph

X1 X2 X3

f1 f2 f3 f4

Definition: factor graph

Variables:

X = (X1, . . . , Xn), where Xi 2 Domaini
Factors:

f1, . . . , fm, with each fj(X) � 0
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Example: map coloring

WA

NT

SA

Q

NSW

V

T

Variables:

X = (WA,NT, SA,Q,NSW,V,T)

Domaini 2 {R,G,B}
Factors:

f1(X) = [WA 6= NT]

f2(X) = [NT 6= Q]

...
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Factors

Definition: scope and arity

Scope of a factor fj : set of variables it depends on.

Arity of fj is the number of variables in the scope.

Unary factors (arity 1); Binary factors (arity 2).

Constraints are factors that return 0 or 1.

WA

NT

SA

Q

NSW

V

T

Example: map coloring

Scope of f1(X) = [WA 6= NT] is {WA,NT}
f1 is a binary constraint
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Assignment weights

Definition: assignment weight

Each assignment x = (x1, . . . , xn) has a weight:

Weight(x) =
mY

j=1

fj(x)

An assignment is consistent if Weight(x) > 0.

Objective: find the maximum weight assignment

argmax
x

Weight(x)

A CSP is satisfiable if maxx Weight(x) > 0.
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Summary

X1 X2 X3

f1 f2 f3 f4

Variables, factors: specify locally

Weight({X1 : B, X2 : B, X3 : R}) = 1 · 1 · 2 · 2 = 4

Assignments, weights: optimize globally

CS221 18



Example: object tracking

Problem: object tracking

(O) Noisy sensors report positions: 0, 2, 2.

(T) Objects can’t teleport.

What trajectory did the object take?

0 1 2 3 4

time i

0

1

2

3

p
o
s
it
io
n
X

i
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Example: object tracking CSP

Factor graph:

X1 X2 X3

t1

o1

0

t2

o2

2

o3

2

x1 o1(x1)

0 2

1 1

2 0

x2 o2(x2)

0 0

1 1

2 2

x3 o3(x3)

0 0

1 1

2 2

|xi � xi+1| ti(xi, xi+1)

0 2

1 1

2 0

[demo]

• Variables Xi 2 {0, 1, 2}: position of object at time i

• Observation factors oi(xi): noisy information compatible with position

• Transition factors ti(xi, xi+1): object positions can’t change too much
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Summary

• Decide on variables and domains

• Translate each desideratum into a set of factors

• Try to keep CSP small (variables, factors, domains, arities)

• When implementing each factor, think in terms of checking a solution rather than com-
puting the solution
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Backtracking search

Algorithm: backtracking search

Backtrack(x,w,Domains):

• If x is complete assignment: update best and return

• Choose unassigned VARIABLE Xi

• Order VALUES Domaini of chosen Xi

• For each value v in that order:

• �  
Y

fj2D(x,Xi)

fj(x [ {Xi : v})

• If � = 0: continue

• Domains
0  Domains via LOOKAHEAD

• If any Domains
0
i is empty: continue

• Backtrack(x [ {Xi : v}, w�,Domains
0)
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Partial assignment weights

Idea: compute weight of partial assignment as we go

WA

NT

SA

Q

NSW

V

T

WA NT SA Q NSW V T

[WA 6= NT]
[WA 6= SA]

[NT 6= SA]

[NT 6= Q]

[SA 6= Q]

[SA 6= NSW]

[Q 6= NSW]

[SA 6= V]

[NSW 6= V]



Dependent factors

• Partial assignment (e.g., x = {WA : R,NT : G})

WA

NT

SA

Q

NSW

V

T

Definition: dependent factors

Let D(x,Xi) be set of factors depending on Xi and x but not on unassigned variables.

D({WA : R,NT : G}, SA) = {[WA 6= SA], [NT 6= SA]}
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Lookahead: forward checking

Key idea: forward checking (one-step lookahead)

• After assigning a variable Xi, eliminate inconsistent values from the domains of
Xi’s neighbors.

• If any domain becomes empty, return.

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

Inconsistent!

CS221 12



Choosing an unassigned variable

WA

NT

SA

Q

NSW

V

T

Which variable to assign next?

Key idea: most constrained variable

Choose variable that has the smallest domain.

This example: SA (has only one value)
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Ordering values of a selected variable

What values to try for Q?

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

2 + 2 + 2 = 6 consistent values 1 + 1 + 2 = 4 consistent values

Key idea: least constrained value

Order values of selected Xi by decreasing number of consistent values of neighboring

variables.
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When to fail?

WA

NT

SA

Q

NSW

V

T

Most constrained variable (MCV):

• Must assign every variable

• If going to fail, fail early ) more pruning

Least constrained value (LCV):

• Need to choose some value

• Choose value that is most likely to lead to solution
CS221 18



When do these heuristics help?

• Most constrained variable: useful when some factors are constraints (can prune assign-
ments with weight 0)

[x1 = x2] [x2 6= x3] + 2

• Least constrained value: useful when all factors are constraints (all assignment weights
are 1 or 0)

[x1 = x2] [x2 6= x3]

• Forward checking: needed to prune domains to make heuristics useful!
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Arc consistency

Definition: arc consistency

A variable Xi is arc consistent with respect to Xj if for each xi 2 Domaini, there
exists xj 2 Domainj such that f({Xi : xi, Xj : xj}) 6= 0 for all factors f whose
scope contains Xi and Xj .

Algorithm: enforce arc consistency

EnforceArcConsistency(Xi, Xj): Remove values from Domaini to make Xi arc con-
sistent with respect to Xj .
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AC-3

Forward checking: when assign Xj : xj , set Domainj = {xj} and enforce arc consistency on
all neighbors Xi with respect to Xj

AC-3: repeatedly enforce arc consistency on all variables

Algorithm: AC-3

S  {Xj}.
While S is non-empty:

Remove any Xj from S.

For all neighbors Xi of Xj :

Enforce arc consistency on Xi w.r.t. Xj .

If Domaini changed, add Xi to S.

Xj Xi

CS221 10



Limitations of AC-3

• AC-3 isn’t always e↵ective:

WA

NT

SA

• No consistent assignments, but AC-3 doesn’t detect a problem!

• Intuition: if we look locally at the graph, nothing blatantly wrong...
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Backtracking search
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Greedy search



Beam search

Beam size K = 4



Beam search

Idea: keep  K candidate list C of partial assignments

Algorithm: beam search

Initialize C  [{}]
For each i = 1, . . . , n:

Extend:

C 0  {x [ {Xi : v} : x 2 C, v 2 Domaini}
Prune:

C  K elements of C 0 with highest weights

Not guaranteed to find maximum weight assignment!

[demo: beamSearch({K:3})]
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Summary

• Beam size K controls tradeo↵ between e�ciency and accuracy

• K = 1 is greedy search (O(nb) time)

• K = 1 is BFS (O(bn) time)

Backtracking search : DFS :: beam search : pruned BFS
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Search strategies

Backtracking/beam search: extend partial assignments

Local search: modify complete assignments
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Example: object tracking

0 1 2 3 4

time i

0

1

2

3

p
os
it
io
n
X

i

X1 X2 X3

t1

o1

0

t2

o2

2

o3

2

x1 o1(x1)

0 2

1 1

2 0

x2 o2(x2)

0 0

1 1

2 2

x3 o3(x3)

0 0

1 1

2 2

|xi � xi+1| ti(xi, xi+1)

0 2

1 1

2 0

[demo]
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One small step

X1 X2 X3

t1

o1

0

0

t2

o2

2

0

o3

2

1

Old assignment: (0, 0, 1); how to improve?

(x1, v, x3) weight

(0, 0, 1) 2 · 2 · 0 · 1 · 1 = 0

(0, 1, 1) 2 · 1 · 1 · 2 · 1 = 4

(0, 2, 1) 2 · 0 · 2 · 1 · 1 = 0

New assignment: (0, 1, 1)
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Exploiting locality

X1 X2 X3

t1

o1

t2

o2 o3

Weight of new assignment (x1, v, x3):

o1(x1)t1(x1, v)o2(v)t2(v, x3)o3(x3)

Key idea: locality

When evaluating possible re-assignments to Xi, only need to consider the factors that
depend on Xi.
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Iterated conditional modes (ICM)

Algorithm: iterated conditional modes (ICM)

Initialize x to a random complete assignment

Loop through i = 1, . . . , n until convergence:

Compute weight of xv = x [ {Xi : v} for each v

x xv with highest weight

X1 X2 X3

t1

o1

t2

o2 o3

X1 X2 X3

t1

o1

t2

o2 o3

X1 X2 X3

t1

o1

t2

o2 o3

[demo: iteratedConditionalModes()]
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Convergence properties

• Weight(x) increases or stays the same each iteration

• Converges in a finite number of iterations

• Can get stuck in local optima

• Not guaranteed to find optimal assignment!
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Summary

X1 X2 X3

t1

o1

t2

o2 o3

Algorithm Strategy Optimality Time complexity

Backtracking search extend partial assignments exact exponential

Beam search extend partial assignments approximate linear

Local search (ICM) modify complete assignments approximate linear
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Definition

Definition: Markov network

A Markov network is a factor graph which defines a joint distribution over random
variables X = (X1, . . . , Xn):

P(X = x) =
Weight(x)

Z
where Z =

P
x0 Weight(x0) is the normalization constant.

x1 x2 x3 Weight(x) P(X = x)

0 1 1 4 0.15

0 1 2 4 0.15

1 1 1 4 0.15

1 1 2 4 0.15

1 2 1 2 0.08

1 2 2 8 0.31

Z = 4 + 4 + 4 + 4 + 2 + 8 = 26

Represents uncertainty!
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Marginal probabilities

Example question: where was the object at time step 2 (X2)?

Definition: Marginal probability

The marginal probability of Xi = v is given by:

P(Xi = v) =
X

x:xi=v

P(X = x)

Object tracking example:

x1 x2 x3 Weight(x) P(X = x)

0 1 1 4 0.15

0 1 2 4 0.15

1 1 1 4 0.15

1 1 2 4 0.15

1 2 1 2 0.08

1 2 2 8 0.31

P(X2 = 1) = 0.15 + 0.15 + 0.15 + 0.15 = 0.62

P(X2 = 2) = 0.08 + 0.31 = 0.38

Note: di↵erent than max weight assignment!
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Summary

Markov networks = factor graphs + probability

• Normalize weights to get probablity distribution

• Can compute marginal probabilities to focus on variables

CSPs Markov networks

variables random variables

weights probabilities

maximum weight assignment marginal probabilities
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Gibbs sampling

Algorithm: Gibbs sampling

Initialize x to a random complete assignment

Loop through i = 1, . . . , n until convergence:

Set xi = v with prob. P(Xi = v | X�i = x�i)
(X�i denotes all variables except Xi)

Increment counti(xi)

Estimate P̂(Xi = xi) =
counti(xi)P
v counti(v)

X1 X2 X3

t1

o1

t2

o2 o3

X1 X2 X3

t1

o1

t2

o2 o3

X1 X2 X3

t1

o1

t2

o2 o3

Example: sampling one variable

Weight(x [ {X2 : 0}) = 1 prob. 0.2

Weight(x [ {X2 : 1}) = 2 prob. 0.4

Weight(x [ {X2 : 2}) = 2 prob. 0.4

0 0.2 0.6 1

[demo]
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Search versus sampling

Iterated Conditional Modes Gibbs sampling

maximum weight assignment marginal probabilities

choose best value sample a value

converges to local optimum marginals converge to correct answer*

*under technical conditions (su�cient condition: all weights positive), but could take exponen-
tial time
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Summary

X1 X2 X3

t1

o1

t2

o2 o3

• Objective: compute marginal probabilities P(Xi = xi)

• Gibbs sampling: sample one variable at a time, count visitations

• More generally: Markov chain Monte Carlo (MCMC) powerful toolkit of randomized

procedures
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Markov networks versus Bayesian networks

Both define a joint probability distribution over assignments

X1 X2 X3

t1

o1

t2

o2 o3

H1 H2 H3

E1 E2 E3

Markov networks Bayesian networks

arbitrary factors local conditional probabilities

set of preferences generative process

CS221 4



Review: probability

Random variables: sunshine S 2 {0, 1}, rain R 2 {0, 1}

Joint distribution (probabilistic database):

P(S,R) =

s r P(S = s,R = r)

0 0 0.20

0 1 0.08

1 0 0.70

1 1 0.02

Marginal distribution:

(aggregate rows)

P(S) =
s P(S = s)

0 0.28

1 0.72

Conditional distribution:

(select rows, normalize)

P(S | R = 1) =

s P(S = s | R = 1)

0 0.8

1 0.2
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Bayesian network (definition)

Definition: Bayesian network

Let X = (X1, . . . , Xn) be random variables.

A Bayesian network is a directed acyclic graph (DAG) that specifies a joint distri-
bution over X as a product of local conditional distributions, one for each node:

P(X1 = x1, . . . , Xn = xn)
def
=

nY

i=1

p(xi | xParents(i))
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Probabilistic inference (definition)

Input

Bayesian network: P(X1, . . . , Xn)

Evidence: E = e where E ✓ X is subset of variables

Query: Q ✓ X is subset of variables

Output

P(Q | E = e) P(Q = q | E = e) for all values q

Example: if coughing and itchy eyes, have a cold?

P(C | H = 1, I = 1)
CS221 18



Bayesian network (alarm)

B E

A

b p(b)

1 ✏

0 1� ✏

e p(e)

1 ✏

0 1� ✏

b e a p(a | b, e)
0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

p(b) = ✏ · [b = 1] + (1� ✏) · [b = 0]

p(e) = ✏ · [e = 1] + (1� ✏) · [e = 0]

p(a | b, e) = [a = (b _ e)]

P(B = b, E = e,A = a)
def
= p(b)p(e)p(a | b, e)
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Explaining away

B E

A

Key idea: explaining away

Suppose two causes positively influence an e↵ect. Conditioned on the e↵ect, further
conditioning on one cause reduces the probability of the other cause.

P(B = 1 | A = 1, E = 1) < P(B = 1 | A = 1)

Note: happens even if causes are independent!

CS221 12



Summary

B E

A

• Random variables capture state of world

• Directed edges between variables represent dependencies

• Local conditional distributions ) joint distribution

• Probabilistic inference: ask questions about world

• Captures reasoning patterns (e.g., explaining away)
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Probabilistic programs

B E

A

Joint distribution:

P(B = b, E = e,A = a) = p(b)p(e)p(a | b, e)

Probabilistic program: alarm

B ⇠ Bernoulli(✏)

E ⇠ Bernoulli(✏)

A = B _ E

def Bernoulli(epsilon):

return random.random() < epsilon

Key idea: probabilistic program

A randomized program that sets the random variables.

CS221 2



Reduction to Markov networks

C A

H I

C A

H I

p(c) p(a)

p(h | c, a) p(i | a)

P(C = c, A = a,H = h, I = i) = 1
Z p(c)p(a)p(h | c, a)p(i | a)

Bayesian network = Markov network with normalization constant Z = 1

Reminder: single factor that connects all parents!

CS221 6



Conditioning on evidence

C A

H I

C A

p(c) p(a)

p(h = 1 | c, a)
p(i = 1 | a)

Markov network:

P(C = c, A = a | H = 1, I = 1) = 1
Z p(c)p(a)p(h = 1 | c, a)p(i = 1 | a)

Bayesian network with evidence = Markov network with Z = P(H = 1, I = 1)

Solution: run any inference algorithm for Markov networks (e.g., Gibbs sampling)!

[demo]
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Leveraging additional structure: unobserved leaves

C A

H I

Markov network:

P(C = c, A = a, I = i | H = 1) = 1
Z p(c)p(a)p(h = 1 | c, a)p(i | a),

where Z = P(H = 1)

Question: P(C = 1 | H = 1)

Can we reduce the Markov network before running inference?
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Leveraging additional structure: unobserved leaves

C A

H I

Markov network:

P(C = c, A = a | H = 1)=
P

i P(C = c, A = a, I = i | H = 1)

=
P

i
1
Z p(c)p(a)p(h = 1 | c, a)p(i | a)

= 1
Z p(c)p(a)p(h = 1 | c, a)

P
i p(i | a)

= 1
Z p(c)p(a)p(h = 1 | c, a)

Throw away any unobserved leaves before running inference!
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Leveraging additional structure: independence

C A

H I

Markov network:

P(C = c | I = 1)=
P

a,h P(C = c, A = a,H = h | I = 1)

=
P

a,h
1
Z p(c)p(a)p(h | c, a)p(i = 1 | a)

=
P

a
1
Z p(c)p(a)p(i = 1 | a)

= p(c)
P

a
1
Z p(a)p(i = 1 | a)

= p(c)

Throw away any disconnected components before running inference!
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Summary

C A

H I

• Condition on evidence (e.g., I = 1)

• Throw away unobserved leaves (e.g., H)

• Throw away disconnected components (e.g., A and I)

• Define Markov network out of remaining factors

• Run your favorite inference algorithm (e.g., manual, Gibbs sampling)
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Inference questions

H1 H2 H3

E1 E2 E3

0 2 2

Question (filtering):

P(H2 | E1 = 0, E2 = 2)

Question (smoothing):

P(H2 | E1 = 0, E2 = 2, E3 = 2)

Note: filtering is a special case of smoothing if marginalize unobserved leaves

CS221 4



Lattice representation

start

H1=0 H2=0 H3=0

H1=1 H2=1 H3=1

H1=2 H2=2 H3=2

end

p(h1 = 0)p(e1 = 0|h1 = 0)

p(h2 = 0|h1 = 0)p(e2 = 2|h2 = 0) p(h3 = 0|h2 = 0)p(e3 = 2|h3 = 0)

• Edge start ) H1 = h1 has weight p(h1)p(e1 | h1)

• Edge Hi�1 = hi�1 ) Hi = hi has weight p(hi | hi�1)p(ei | hi)

• Each path from start to end is an assignment with weight equal to the product of
edge weights

Key: P(Hi = hi | E = e) is the weighted fraction of paths through Hi = hi
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Forward and backward messages

start

H1=0 H2=0 H3=0

H1=1 H2=1 H3=1

H1=2 H2=2 H3=2

end

p(h1 = 0)p(e1 = 0|h1 = 0)

p(h2 = 0|h1 = 0)p(e2 = 2|h2 = 0) p(h3 = 0|h2 = 0)p(e3 = 2|h3 = 0)

Forward: Fi(hi) =
P

hi�1
Fi�1(hi�1)Weight( Hi�1 = hi�1 , Hi = hi )

sum of weights of paths from start to Hi = hi

Backward: Bi(hi) =
P

hi+1
Bi+1(hi+1)Weight( Hi = hi , Hi+1 = hi+1 )

sum of weights of paths from Hi = hi to end

Define Si(hi) = Fi(hi)Bi(hi):

sum of weights of paths from start to end through Hi = hi
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Putting everything together

start

H1=0 H2=0 H3=0

H1=1 H2=1 H3=1

H1=2 H2=2 H3=2

end

p(h1 = 0)p(e1 = 0|h1 = 0)

p(h2 = 0|h1 = 0)p(e2 = 2|h2 = 0) p(h3 = 0|h2 = 0)p(e3 = 2|h3 = 0)

P(Hi = hi | E = e) = Si(hi)P
v Si(v)

Algorithm: forward-backward algorithm

Compute F1, F2, . . . , Fn

Compute Bn, Bn�1, . . . , B1

Compute Si for each i and normalize

Running time: O(n|Domain|2)

[demo]
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Review: inference in Hidden Markov models

H1 H2 H3

E1 E2 E3

0 2 2

Filtering questions:

P(H1 | E1 = 0)

P(H2 | E1 = 0, E2 = 2)

P(H3 | E1 = 0, E2 = 2, E3 = 2)

Problem: many possible location values for Hi

Forward-backward is too slow (O(n|Domain|2))...
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Why sampling?

distribution K with highest weight K sampled from distribution

not representative more representative

Sampling is especially important when there is high uncertainty!
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Particle filtering

Algorithm: particle filtering

Initialize C  [{}]
For each i = 1, . . . , n:

Propose:

C
0  {h [ {Hi : hi} : h 2 C, hi ⇠ p(hi | hi�1)}

Weight:

Compute weights w(h) = p(ei | hi) for h 2 C
0

Resample:

C  K particles drawn independently from w(h)P
h02C w(h0)

[demo: particleFiltering({K:100})]
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Step 1: propose

Old particles: ⇡ P(H1, H2 | E1 = 0, E2 = 2)

{H1 : 0, H2 : 1}
{H1 : 1, H2 : 2}

Key idea: proposal distribution

For each old particle (h1, h2), sample H3 ⇠ p(h3 | h2).

hi p(hi | hi�1)

hi�1 � 1 1/4

hi�1 1/2

hi�1 + 1 1/4

New particles: ⇡ P(H1, H2, H3 | E1 = 0, E2 = 2)

{H1 : 0, H2 : 1, H3 : 1}
{H1 : 1, H2 : 2, H3 : 2}

CS221 10



Step 2: weight

Old particles: ⇡ P(H1, H2, H3 | E1 = 0, E2 = 1)

{H1 : 0, H2 : 1 : H3 : 1}
{H1 : 1, H2 : 2 : H3 : 2}

Key idea: weighting based on evidence

For each old particle (h1, h2, h3), weight it by p(e3 = 2 | h3).

h3 p(e3 = 2 | h3)

0 0

1 1/4

2 1/2

New particles: ⇡ P(H1, H2, H3 | E1 = 0, E2 = 1, E3 = 2)

{H1 : 0, H2 : 1 : H3 : 1} (1/4)

{H1 : 1, H2 : 2 : H3 : 2} (1/2)
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Step 3: resample

Old particles: ⇡ P(H1, H2, H3 | E1 = 0, E2 = 2, E3 = 2)

{H1 : 0, H2 : 1 : H3 : 1} (1/4) ) 1/3

{H1 : 1, H2 : 2 : H3 : 2} (1/2) ) 2/3

Key idea: resampling

Normalize weights and draw K samples to redistribute particles to more promising

areas.

New particles: ⇡ P(H1, H2, H3 | E1 = 0, E2 = 2, E3 = 2)

{H1 : 1, H2 : 2 : H3 : 2}
{H1 : 1, H2 : 2 : H3 : 2}
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Summary

H1 H2 H3

E1 E2 E3

0 2 2

P(H3 | E1 = 0, E2 = 2, E3 = 2)

• Use particles to represent an approximate distribution

Propose (transitions) Weight (emissions) Resample

• Can scale to large number of locations (unlike forward-backward)

• Maintains better particle diversity (compared to beam search)
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Where do parameters come from?

C A

H I

c p(c)

1 ?

0 ?

a p(a)

1 ?

0 ?

c a h p(h | c, a)
0 0 0 ?

0 0 1 ?

0 1 0 ?

0 1 1 ?

1 0 0 ?

1 0 1 ?

1 1 0 ?

1 1 1 ?

a i p(i | a)
0 0 ?

0 1 ?

1 0 ?

1 1 ?
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Learning task

Training data

Dtrain (an example is an assignment to X)

Parameters

✓ (local conditional probabilities)
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Parameter sharing

Key idea: parameter sharing

The local conditional distributions of di↵erent variables can share the same parameters.

G

R1 R2

g pG(g)

c 2/5

d 3/5

g r pR(r | g)
d 3 1/6

d 4 3/6

d 5 2/6

c 1 1/4

c 2 1/4

c 4 1/4

c 5 1/4

Impact: more reliable estimates, less expressive model
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General case

Bayesian network: variables X1, . . . , Xn

Parameters: collection of distributions ✓ = {pd : d 2 D} (e.g., D = {start, trans, emit})

Each variable Xi is generated from distribution pdi :

P(X1 = x1, . . . , Xn = xn) =
nY

i=1

pdi(xi | xParents(i))

Parameter sharing: di could be same for multiple i

CS221 34



General case: learning algorithm

Input: training examples Dtrain of full assignments

Output: parameters ✓ = {pd : d 2 D}

Algorithm: count and normalize

Count:

For each x 2 Dtrain:

For each variable xi:

Increment countdi(xParents(i), xi)

Normalize:

For each d and local assignment xParents(i):

Set pd(xi | xParents(i)) / countd(xParents(i), xi)
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Maximum likelihood

Maximum likelihood objective:

max
✓

Y

x2Dtrain

P(X = x; ✓)

Algorithm: maximum likelihood

Count:

For each x 2 Dtrain:

For each variable xi:

Increment countdi(xParents(i), xi)

Normalize:

For each d and local assignment xParents(i):

Set pd(xi | xParents(i)) / countd(xParents(i), xi)

Closed form — no iterative optimization!
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Review: maximum likelihood

G R P(G = g,R = r) = pG(g)pR(r | g)

Dtrain = {(d, 4), (d, 4), (d, 5), (c, 1), (c, 5)}

✓:

g countG(g) pG(g)

d 3 3/5

c 2 2/5

g r countR(g, r) pR(r | g)
d 4 2 2/3

d 5 1 1/3

c 1 1 1/2

c 5 1 1/2

Do we really believe that pR(r = 2 | g = c) = 0?

Overfitting!
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Laplace smoothing

Key idea: maximum likelihood with Laplace smoothing

For each distribution d and partial assignment (xParents(i), xi):

Add � to countd(xParents(i), xi).

Further increment counts {countd} based on Dtrain.

Hallucinate � occurrences of each local assignment
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Interplay between smoothing and data

Larger � ) more smoothing ) probabilities closer to uniform

g countG(g) pG(g)

d 1/2+1 3/4

c 1/2 1/4

g countG(g) pG(g)

d 1+1 2/3

c 1 1/3

Data wins out in the end (suppose only see g = d):

g countG(g) pG(g)

d 1+1 2/3

c 1 1/3

g countG(g) pG(g)

d 1+998 0.999

c 1 0.001
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Motivation

G

R1 R2

Genre G 2 {drama, comedy}
Jim’s rating R1 2 {1, 2, 3, 4, 5}
Martha’s rating R2 2 {1, 2, 3, 4, 5}

If observe all the variables: maximum likelihood = count and normalize

Dtrain = {(d, 4, 5), (d, 4, 4), (d, 5, 3), (c, 1, 2), (c, 5, 4)}

What if we don’t observe some of the variables?

Dtrain = {(?, 4, 5), (?, 4, 4), (?, 5, 3), (?, 1, 2), (?, 5, 4)}
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Expectation Maximization (EM)

Intuition: generalization of the K-means algorithm

cluster centroids = parameters ✓ cluster assignments = hidden variables H

Variables: H is hidden, E = e is observed

Algorithm: Expectation Maximization (EM)

Initialize ✓ randomly

Repeat until convergence:

E-step:

Compute q(h) = P(H = h | E = e; ✓) for each h (probabilistic inference)

Create fully-observed weighted examples: (h, e) with weight q(h)

M-step:

Maximum likelihood (count and normalize) on weighted examples to get ✓
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Summary

H1 H2 H3 H4 H5

E1 E2 E3 E4 E5

Maximum marginal likelihood:
max

✓

Y

e2Dtrain

P(E = e; ✓)

EM algorithm:

hidden variables q(h)

( probabilistic inference (E-step)

count and normalize (M-step) )

parameters ✓

Applications: decipherment, phylogenetic reconstruction, crowdsourcing
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Course plan

Reflex

Search problems

Markov decision processes

Adversarial games

States

Constraint satisfaction problems

Markov networks

Bayesian networks

Variables Logic

”Low-level intelligence” ”High-level intelligence”

Machine learning
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Modeling paradigms

State-based models: search problems, MDPs, games

Applications: route finding, game playing, etc.

Think in terms of states, actions, and costs

Variable-based models: CSPs, Bayesian networks

Applications: scheduling, tracking, medical diagnosis, etc.

Think in terms of variables and factors

Logic-based models: propositional logic, first-order logic

Applications: theorem proving, verification, reasoning

Think in terms of logical formulas and inference rules
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Natural language

Example:

• A dime is better than a nickel.

• A nickel is better than a penny.

• Therefore, a dime is better than a penny.

Example:

• A penny is better than nothing.

• Nothing is better than world peace.

• Therefore, a penny is better than world peace???

Natural language is slippery...
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Two goals of a logic language

• Represent knowledge about the world

• Reason with that knowledge
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Ingredients of a logic

Syntax: defines a set of valid formulas (Formulas)

Example: Rain ^Wet

Semantics: for each formula, specify a set of models (assignments / configurations of the
world)

Example:
0 1

0

1

Wet

R
ai
n

Inference rules: given f , what new formulas g can be added that are guaranteed to follow
( fg )?

Example: from Rain ^Wet, derive Rain
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Syntax versus semantics

Syntax: what are valid expressions in the language?

Semantics: what do these expressions mean?

Di↵erent syntax, same semantics (5):

2 + 3 , 3 + 2

Same syntax, di↵erent semantics (1 versus 1.5):

3 / 2 (Python 2.7) 6, 3 / 2 (Python 3)
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Propositional logic

Syntax Semantics

formula

Inference

rules

models
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Logics

• Propositional logic with only Horn clauses

• Propositional logic

• Modal logic

• First-order logic with only Horn clauses

• First-order logic

• Second-order logic

• ...

Key idea: tradeo↵

Balance expressivity and computational e�ciency.
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Syntax of propositional logic

Propositional symbols (atomic formulas): A,B,C

Logical connectives: ¬,^,_,!,$

Build up formulas recursively—if f and g are formulas, so are the following:

• Negation: ¬f

• Conjunction: f ^ g

• Disjunction: f _ g

• Implication: f ! g

• Biconditional: f $ g
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Syntax of propositional logic

Key idea: syntax provides symbols

Formulas by themselves are just symbols (syntax).

No meaning yet (semantics)!
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Model

Definition: model

A model w in propositional logic is an assignment of truth values to propositional
symbols.

Example:

• 3 propositional symbols: A,B,C

• 23 = 8 possible models w:
{A : 0, B : 0, C : 0}
{A : 0, B : 0, C : 1}
{A : 0, B : 1, C : 0}
{A : 0, B : 1, C : 1}
{A : 1, B : 0, C : 0}
{A : 1, B : 0, C : 1}
{A : 1, B : 1, C : 0}
{A : 1, B : 1, C : 1}
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Interpretation function

Definition: interpretation function

Let f be a formula.

Let w be a model.

An interpretation function I(f, w) returns:
• true (1) (say that w satisfies f)

• false (0) (say that w does not satisfy f)

f w
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Interpretation function: example

Example: interpretation function

Formula: f = (¬A ^B) $ C

Model: w = {A : 1, B : 1, C : 0}
Interpretation:

I((¬A ^B) $ C,w) = 1

I(¬A ^B,w) = 0

I(¬A,w) = 0

I(A,w) = 1

I(B,w) = 1

I(C,w) = 0
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Formula represents a set of models

So far: each formula f and model w has an interpretation I(f, w) 2 {0, 1}

Definition: models

Let M(f) be the set of models w for which I(f, w) = 1.

f
M(f)
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Models: example

Formula:

f = Rain _Wet

Models:

M(f) =
0 1

0

1

Wet

R
ai
n

Key idea: compact representation

A formula compactly represents a set of models.

CS221 14



Knowledge base

Definition: Knowledge base

A knowledge base KB is a set of formulas representing their conjunction / intersec-
tion:

M(KB) =
\

f2KB

M(f).

Intuition: KB specifies constraints on the world. M(KB) is the set of all worlds
satisfying those constraints.

Let KB = {Rain _ Snow,Tra�c}.

M(Rain _ Snow) M(Tra�c)M(KB)
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Adding to the knowledge base

Adding more formulas to the knowledge base:

KB KB [ {f}

Shrinks the set of models:

M(KB) M(KB) \M(f)

How much does M(KB) shrink?

[whiteboard]
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Entailment

M(f)M(KB)

Intuition: f added no information/constraints (it was already known).

Definition: entailment

KB entails f (written KB |= f) i↵

M(KB) ✓ M(f).

Example: Rain ^ Snow |= Snow
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Contradiction

M(KB) M(f)

Intuition: f contradicts what we know (captured in KB).

Definition: contradiction

KB contradicts f i↵ M(KB) \M(f) = ;.

Example: Rain ^ Snow contradicts ¬Snow
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Contradiction and entailment

Contradiction:

M(KB) M(f)

Entailment:

M(¬f)M(KB)

Proposition: contradiction and entailment

KB contradicts f i↵ KB entails ¬f .
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Contingency

M(KB) M(f)

Intuition: f adds non-trivial information to KB

; ( M(KB) \M(f) ( M(KB)

Example: Rain and Snow
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Satisfiability

Definition: satisfiability

A knowledge base KB is satisfiable if M(KB) 6= ;.

Reduce Ask[f ] and Tell[f ] to satisfiability:

Is KB [ {¬f} satisfiable?

entailment Is KB [ {f} satisfiable?

contradiction contingent

no yes

no yes
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Model checking

Checking satisfiability (SAT) in propositional logic is special case of solving CSPs!

Mapping:

propositional symbol ) variable

formula ) constraint

model ( assignment
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Model checking

Example: model checking

KB = {A _B,B $ ¬C}

Propositional symbols (CSP variables):

{A,B,C}

CSP:

A B C
A _B B $ ¬C

Consistent assignment (satisfying model):

{A : 1, B : 0, C : 1}
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Propositional logic

Syntax Semantics

formula

Inference

rules

models
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Inference rules

Example of making an inference:

It is raining. (Rain)

If it is raining, then it is wet. (Rain ! Wet)

Therefore, it is wet. (Wet)

Rain, Rain ! Wet

Wet
(premises)
(conclusion)

Definition: Modus ponens inference rule

For any propositional symbols p and q:
p, p!q

q
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Inference framework

Definition: inference rule

If f1, . . . , fk, g are formulas, then the following is an inference rule:
f1, . . . , fk

g

Key idea: inference rules

Rules operate directly on syntax, not on semantics.
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Inference algorithm

Algorithm: forward inference

Input: set of inference rules Rules.

Repeat until no changes to KB:

Choose set of formulas f1, . . . , fk 2 KB.

If matching rule f1, ... ,fk
g exists:

Add g to KB.

Definition: derivation

KB derives/proves f (KB ` f) i↵ f eventually gets added to KB.
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Desiderata for inference rules

Semantics

Interpretation defines entailed/true formulas: KB |= f :

M(f)M(KB)

Syntax:

Inference rules derive formulas: KB ` f

How does {f : KB |= f} relate to {f : KB ` f}?
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Truth

{f : KB |= f}
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Soundness

Definition: soundness

A set of inference rules Rules is sound if:

{f : KB ` f} ✓ {f : KB |= f}
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Completeness

Definition: completeness

A set of inference rules Rules is complete if:

{f : KB ` f} ◆ {f : KB |= f}
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Soundness and completeness

The truth, the whole truth, and nothing but the truth.

• Soundness: nothing but the truth

• Completeness: whole truth

CS221 20



Completeness: example

Recall completeness: inference rules derive all entailed formulas (f such that KB |= f)

Example: Modus ponens is incomplete

Setup:

KB = {Rain,Rain _ Snow ! Wet}

f = Wet

Rules = { f, f!g
g } (Modus ponens)

Semantically: KB |= f (f is entailed).

Syntactically: KB 6` f (can’t derive f).

Incomplete!
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Fixing completeness

Option 1: Restrict the allowed set of formulas

propositional logic

propositional logic with only Horn clauses

Option 2: Use more powerful inference rules

Modus ponens

resolution
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Definite clauses

Definition: Definite clause

A definite clause has the following form:

(p1 ^ · · · ^ pk) ! q

where p1, . . . , pk, q are propositional symbols.

Intuition: if p1, . . . , pk hold, then q holds.

Example: (Rain ^ Snow) ! Tra�c

Example: Tra�c

Non-example: ¬Tra�c

Non-example: (Rain ^ Snow) ! (Tra�c _ Peaceful)
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Horn clauses

Definition: Horn clause

A Horn clause is either:

• a definite clause (p1 ^ · · · ^ pk ! q)

• a goal clause (p1 ^ · · · ^ pk ! false)

Example (definite): (Rain ^ Snow) ! Tra�c

Example (goal): Tra�c ^ Accident ! false

equivalent: ¬(Tra�c ^ Accident)
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Modus ponens

Inference rule:

Definition: Modus ponens

p1, · · · , pk, (p1 ^ · · · ^ pk) ! q

q

Example:

Example: Modus ponens

Wet, Weekday, Wet ^Weekday ! Tra�c

Tra�c
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Completeness of modus ponens

Theorem: Modus ponens on Horn clauses

Modus ponens is complete with respect to Horn clauses:

• Suppose KB contains only Horn clauses and p is an entailed propositional sym-

bol.

• Then applying modus ponens will derive p.

Upshot:

KB |= p (entailment) is the same as KB ` p (derivation)!
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Resolution [Robinson, 1965]

General clauses have any number of literals:

¬A _B _ ¬C _D _ ¬E _ F

Example: resolution inference rule

Rain _ Snow, ¬Snow _ Tra�c

Rain _ Tra�c

Definition: resolution inference rule

f1 _ · · · _ fn _ p, ¬p _ g1 _ · · · _ gm
f1 _ · · · _ fn _ g1 _ · · · _ gm
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Conjunctive normal form

So far: resolution only works on clauses...but that’s enough!

Definition: conjunctive normal form (CNF)

A CNF formula is a conjunction of clauses.

Example: (A _B _ ¬C) ^ (¬B _D)

Equivalent: knowledge base where each formula is a clause

Proposition: conversion to CNF

Every formula f in propositional logic can be converted into an equivalent CNF formula
f 0:

M(f) = M(f 0)
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Conversion to CNF: general

Conversion rules:

• Eliminate $: f$g
(f!g)^(g!f)

• Eliminate !: f!g
¬f_g

• Move ¬ inwards: ¬(f^g)
¬f_¬g

• Move ¬ inwards: ¬(f_g)
¬f^¬g

• Eliminate double negation: ¬¬f
f

• Distribute _ over ^: f_(g^h)
(f_g)^(f_h)
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Resolution algorithm

Recall: relationship between entailment and contradiction (basically ”proof by contradiction”)

KB |= f KB [ {¬f} is unsatisfiable

Algorithm: resolution-based inference

• Add ¬f into KB.

• Convert all formulas into CNF.
• Repeatedly apply resolution rule.

• Return entailment i↵ derive false.
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Resolution: example

KB0 = {A ! (B _ C), A,¬B,¬C}

Convert to CNF:

KB0 = {¬A _B _ C,A,¬B,¬C}

Repeatedly apply resolution rule:

false

C

B _ C

¬A _B _ C A

¬B

¬C

Conclusion: KB entails f
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Limitations of propositional logic

All students know arithmetic.

AliceIsStudent ! AliceKnowsArithmetic

BobIsStudent ! BobKnowsArithmetic

. . .

Propositional logic is very clunky. What’s missing?

• Objects and predicates: propositions (e.g., AliceKnowsArithmetic) have more internal

structure (alice, Knows, arithmetic)

• Quantifiers and variables: all is a quantifier which applies to each person, don’t want to

enumerate them all...
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First-order logic: examples

Alice and Bob both know arithmetic.

Knows(alice, arithmetic) ^ Knows(bob, arithmetic)

All students know arithmetic.

8x Student(x) ! Knows(x, arithmetic)
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Syntax of first-order logic

Terms (refer to objects):

• Constant symbol (e.g., arithmetic)

• Variable (e.g., x)

• Function of terms (e.g., Sum(3, x))

Formulas (refer to truth values):

• Atomic formulas (atoms): predicate applied to terms (e.g., Knows(x, arithmetic))

• Connectives applied to formulas (e.g., Student(x) ! Knows(x, arithmetic))

• Quantifiers applied to formulas (e.g., 8x Student(x) ! Knows(x, arithmetic))
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Quantifiers

Universal quantification (8):

Think conjunction: 8xP (x) is like P (A) ^ P (B) ^ · · ·

Existential quantification (9):

Think disjunction: 9xP (x) is like P (A) _ P (B) _ · · ·

Some properties:

• ¬8xP (x) equivalent to 9x¬P (x)

• 8x 9yKnows(x, y) di↵erent from 9y 8xKnows(x, y)
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Natural language quantifiers

Universal quantification (8):

Every student knows arithmetic.

8x Student(x)!Knows(x, arithmetic)

Existential quantification (9):

Some student knows arithmetic.

9x Student(x)^Knows(x, arithmetic)

Note the di↵erent connectives!
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Models in first-order logic

Definition: model in first-order logic

A model w in first-order logic maps:

• constant symbols to objects

w(alice) = o1, w(bob) = o2, w(arithmetic) = o3

• predicate symbols to tuples of objects

w(Knows) = {(o1, o3), (o2, o3), . . . }
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Graph representation of a model

If only have unary and binary predicates, a model w can be represented as a directed graph:

w

o1 o2

o3

alice

bob

robert

arithmetic

Knows Knows

Student

• Nodes are objects, labeled with constant symbols

• Directed edges are binary predicates, labeled with predicate symbols; unary predicates are
additional node labels
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A restriction on models

John and Bob are students.

Student(john) ^ Student(bob)

w1

o1 o2

Student Student

john bob

w2

o1

Student

john bob

w3

o1 o2 o3

Student Student

john bob

• Unique names assumption: Each object has at most one constant symbol. This rules
out w2.

• Domain closure: Each object has at least one constant symbol. This rules out w3.

Point:

constant symbol object
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Propositionalization

If one-to-one mapping between constant symbols and objects (unique names and domain
closure),

first-order logic is syntactic sugar for propositional logic:

Knowledge base in first-order logic

Student(alice) ^ Student(bob)

8x Student(x) ! Person(x)

9x Student(x) ^ Creative(x)

Knowledge base in propositional logic

Studentalice ^ Studentbob

(Studentalice ! Personalice) ^ (Studentbob ! Personbob)

(Studentalice ^ Creativealice) _ (Studentbob ^ Creativebob)

Point: use any inference algorithm for propositional logic!
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Substitution

Subst[{x/alice}, P (x)] = P (alice)

Subst[{x/alice, y/z}, P (x) ^K(x, y)] = P (alice) ^K(alice, z)

Definition: Substitution

A substitution ✓ is a mapping from variables to terms.

Subst[✓, f ] returns the result of performing substitution ✓ on f .
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Unification

Unify[Knows(alice, arithmetic),Knows(x, arithmetic)] = {x/alice}

Unify[Knows(alice, y),Knows(x, z)] = {x/alice, y/z}

Unify[Knows(alice, y),Knows(bob, z)] = fail

Unify[Knows(alice, y),Knows(x, F (x))] = {x/alice, y/F (alice)}

Definition: Unification

Unification takes two formulas f and g and returns a substitution ✓ which is the most
general unifier:

Unify[f, g] = ✓ such that Subst[✓, f ] = Subst[✓, g]

or ”fail” if no such ✓ exists.
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Modus ponens

Definition: modus ponens (first-order logic)

a01, . . . , a
0
k 8x1 · · · 8xn(a1 ^ · · · ^ ak) ! b

b0

Get most general unifier ✓ on premises:

• ✓ = Unify[a01 ^ · · · ^ a0k, a1 ^ · · · ^ ak]

Apply ✓ to conclusion:

• Subst[✓, b] = b0
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Complexity

Theorem: completeness

Modus ponens is complete for first-order logic with only Horn clauses.

Theorem: semi-decidability

First-order logic (even restricted to only Horn clauses) is semi-decidable.

• If KB |= f , forward inference on complete inference rules will prove f in finite

time.

• If KB 6|= f , no algorithm can show this in finite time.
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