
MDPs: overview

Markov decision process

Definition: Markov decision process

States: the set of states

sstart 2 States: starting state

Actions(s): possible actions from state s

T (s0|s, a): probability of s0 if take action a in state s

Reward(s, a, s0): reward for the transition (s, a, s0)

IsEnd(s): whether at end

0  �  1: discount factor (default: 1)

CS221 24

What is a solution?

Search problem: path (sequence of actions)

MDP:

Definition: policy

A policy ⇡ is a mapping from each state s 2 States to an action a 2 Actions(s).

Example: volcano crossing

s ⇡(s)

(1,1) S

(2,1) E

(3,1) N

... ...

CS221 36

MDPs: policy evaluation

Discounting

Definition: utility

Path: s0, a1r1s1, a2r2s2, . . . (action, reward, new state).

The utility with discount � is

u1 = r1 + �r2 + �2r3 + �3r4 + · · ·

Discount � = 1 (save for the future):

[stay, stay, stay, stay]: 4 + 4 + 4 + 4 = 16

Discount � = 0 (live in the moment):

[stay, stay, stay, stay]: 4 + 0 · (4 + · · ·) = 4

Discount � = 0.5 (balanced life):

[stay, stay, stay, stay]: 4 + 1
2 · 4 + 1

4 · 4 + 1
8 · 4 = 7.5

CS221 44

Policy evaluation

Definition: value of a policy

Let V⇡(s) be the expected utility received by following policy ⇡ from state s.

Definition: Q-value of a policy

Let Q⇡(s, a) be the expected utility of taking action a from state s, and then following
policy ⇡.

⇡(s)
T (s0|s,⇡(s))

s0

s,⇡(s)sV⇡(s)

V⇡(s0)
Q⇡(s,⇡(s))

CS221 48

Policy evaluation

Plan: define recurrences relating value and Q-value

⇡(s)
T (s0|s,⇡(s))

s0

s,⇡(s)sV⇡(s)

V⇡(s0)
Q⇡(s,⇡(s))

V⇡(s) =

(
0 if IsEnd(s)

Q⇡(s,⇡(s)) otherwise.

Q⇡(s, a) =
X

s0

T (s0|s, a)[Reward(s, a, s0) + �V⇡(s
0)]

CS221 50

Policy evaluation

Key idea: iterative algorithm

Start with arbitrary policy values and repeatedly apply recurrences to converge to true
values.

Algorithm: policy evaluation

Initialize V (0)
⇡ (s) 0 for all states s.

For iteration t = 1, . . . , tPE:

For each state s:
V (t)
⇡ (s)

X

s0

T (s0|s,⇡(s))[Reward(s,⇡(s), s0) + �V (t�1)
⇡ (s0)]

| {z }
Q(t�1)(s,⇡(s))

CS221 52

MDPs: value iteration

Optimal value and policy

Goal: try to get directly at maximum expected utility

Definition: optimal value

The optimal value Vopt(s) is the maximum value attained by any policy.

CS221 64

Optimal values and Q-values

a
T (s0|s, a)

s

s, a s0

Vopt(s)

Vopt(s0)

Qopt(s, a)

Optimal value if take action a in state s:

Qopt(s, a) =
X

s0

T (s, a, s0)[Reward(s, a, s0) + �Vopt(s
0)].

Optimal value from state s:

Vopt(s) =

(
0 if IsEnd(s)

maxa2Actions(s)Qopt(s, a) otherwise.

CS221 66

Optimal policies

a
T (s0|s, a)

s

s, a s0

Vopt(s)

Vopt(s0)

Qopt(s, a)

Given Qopt, read o↵ the optimal policy:

⇡opt(s) = arg max
a2Actions(s)

Qopt(s, a)

CS221 68

Value iteration

Algorithm: value iteration [Bellman, 1957]

Initialize V
(0)
opt (s) 0 for all states s.

For iteration t = 1, . . . , tVI:

For each state s:
V

(t)
opt (s) max

a2Actions(s)

X

s0

T (s, a, s0)[Reward(s, a, s0) + �V
(t�1)
opt (s0)]

| {z }
Q(t�1)

opt (s,a)

Time: O(tVISAS0)

CS221 70

Convergence

Theorem: convergence

Suppose either

• discount � < 1, or

• MDP graph is acyclic.

Then value iteration converges to the correct answer.

Example: non-convergence

discount � = 1, zero rewards

CS221 76

Summary of algorithms

• Policy evaluation: (MDP, ⇡) ! V⇡

• Value iteration: MDP ! (Qopt,⇡opt)

CS221 78

MDPs: reinforcement learning

Unknown transitions and rewards

Definition: Markov decision process

States: the set of states

sstart 2 States: starting state

Actions(s): possible actions from state s

IsEnd(s): whether at end of game

0  �  1: discount factor (default: 1)

reinforcement learning!

CS221 2

MDPs: model-based methods

Model-Based Value Iteration

Data: s0; a1, r1, s1; a2, r2, s2; a3, r3, s3; . . . ; an, rn, sn

Key idea: model-based learning

Estimate the MDP: T (s0|s, a) and Reward(s, a, s0)

Transitions:

T̂ (s0|s, a) = # times (s, a, s0) occurs
times (s, a) occurs

Rewards:

\Reward(s, a, s0) = r in (s, a, r, s0)

Compute policy using value iteration under estimated MDP (T̂ , \Reward).

CS221 4

Model-Based Value Iteration

in in,stay

in,quit end

stay
(4/7): $4

(3/7): $4quit

?: $?

Data (following policy ⇡(s) = stay):

[in; stay, 4, end]

• Estimates converge to true values (under certain conditions)

• With estimated MDP (T̂ , \Reward), compute policy using value iteration

CS221 4

Problem

in in,stay

in,quit end

stay
(4/7): $4

(3/7): $4quit

?: $?

Problem: won’t even see (s, a) if a 6= ⇡(s) (a = quit)

Key idea: exploration

To do reinforcement learning, need to explore the state space.

Solution: need ⇡ to explore explicitly (more on this later)

CS221 6

MDPs: model-free methods

From model-based to model-free

Q̂opt(s, a) =
X

s0

T̂ (s0|s, a)[\Reward(s, a, s0) + �V̂opt(s
0)]

All that matters for policy learning is the estimate of Qopt(s, a).

Key idea: model-free reinforcement learning

Try to estimate Qopt(s, a) directly.

This module: start by estimating Q⇡.

CS221 2

Model-free Monte Carlo

Data (following policy ⇡):

s0; a1, r1, s1; a2, r2, s2; a3, r3, s3; . . . ; an, rn, sn

Recall:

Q⇡(s, a) is expected utility starting at s, first taking action a, and then following policy ⇡

Utility:

ut = rt + � · rt+1 + �2 · rt+2 + · · ·

Estimate:

Q̂⇡(s, a) = average of ut where st�1 = s, at = a

(and s, a doesn’t occur in s0, · · · , st�2)

CS221 4

Model-free Monte Carlo

in in,stay

in,quit end

stay

(?): $?

(?): $?quit

?: $?

(4 + 8 + 16)/3

?

Data (following policy ⇡(s) = stay):

[in; stay, 4, in; stay, 4, in; stay, 4, in; stay, 4, end]

Note: we are estimating Q⇡ now, not Qopt

Definition: on-policy versus o↵-policy

On-policy: estimate the value of data-generating policy

O↵-policy: estimate the value of another policy

CS221 6

MDPs: SARSA

Using the reward + Q-value

Current estimate: Q̂⇡(s, stay) = 11

Data (following policy ⇡(s) = stay):

[in; stay, 4, end] 4 + 0

[in; stay, 4, in; stay, 4, end] 4 + 11

[in; stay, 4, in; stay, 4, in; stay, 4, end] 4 + 11

[in; stay, 4, in; stay, 4, in; stay, 4, in; stay, 4, end] 4 + 11

Algorithm: SARSA

On each (s, a, r, s0, a0):

Q̂⇡(s, a) (1� ⌘)Q̂⇡(s, a) + ⌘[r|{z}
data

+� Q̂⇡(s
0, a0)| {z }

estimate

]

CS221 4

Model-free Monte Carlo versus SARSA

Key idea: bootstrapping

SARSA uses estimate Q̂⇡(s, a) instead of just raw data u.

u r + Q̂⇡(s0, a0)

based on one path based on estimate

unbiased biased

large variance small variance

wait until end to update can update immediately

CS221 6

MDPs: Q-learning

Q-learning

Problem: model-free Monte Carlo and SARSA only estimate Q⇡, but want Qopt to act optimally

Output MDP reinforcement learning

Q⇡ policy evaluation model-free Monte Carlo, SARSA

Qopt value iteration Q-learning

CS221 2

Q-learning

Bellman optimality equation:

Qopt(s, a) =
X

s0

T (s0|s, a)[Reward(s, a, s0) + �Vopt(s
0)]

Algorithm: Q-learning [Watkins/Dayan, 1992]

On each (s, a, r, s0):
Q̂opt(s, a) (1� ⌘)Q̂opt(s, a)| {z }

prediction

+ ⌘(r + �V̂opt(s
0))

| {z }
target

Recall: V̂opt(s
0) = max

a02Actions(s0)
Q̂opt(s

0, a0)

CS221 8

O↵-Policy versus On-Policy

Definition: on-policy versus o↵-policy

On-policy: evaluate or improve the data-generating policy

O↵-policy: evaluate or learn using data from another policy

on-policy o↵-policy

policy evaluation
Monte Carlo

SARSA

policy optimization Q-learning

CS221 10

Reinforcement Learning Algorithms

Algorithm Estimating Based on

Model-Based Monte Carlo T̂ , R̂ s0, a1, r1, s1, ...

Model-Free Monte Carlo Q̂⇡ u

SARSA Q̂⇡ r + Q̂⇡

Q-Learning Q̂opt r + Q̂opt

CS221 12

