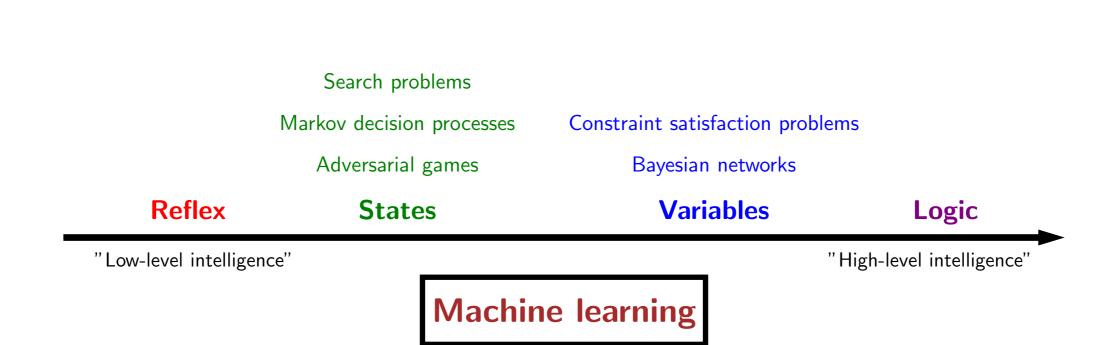
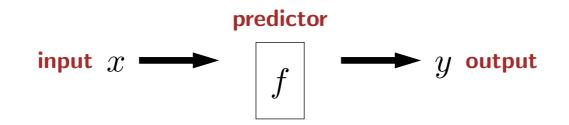
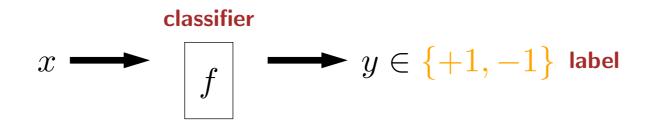
Course plan



Reflex-based models



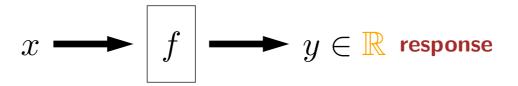
Binary classification

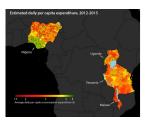


Fraud detection: credit card transaction \rightarrow fraud or no fraud

Toxic comments: online comment \rightarrow toxic or not toxic

Higgs boson: measurements of event \rightarrow decay event or background





Poverty mapping: satellite image \rightarrow asset wealth index

Housing: information about house \rightarrow price

Arrival times: destination, weather, time \rightarrow time of arrival

Structured prediction

$$x \longrightarrow f \longrightarrow y$$
 is a complex object

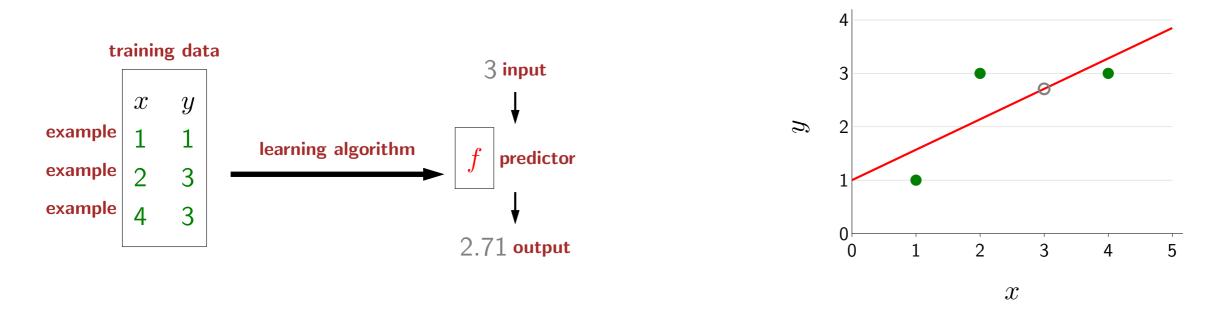
Machine translation: English sentence \rightarrow Japanese sentence

Dialogue: conversational history \rightarrow next utterance

Image captioning: image \rightarrow sentence describing image

Image segmentation: image \rightarrow segmentation

Linear regression framework

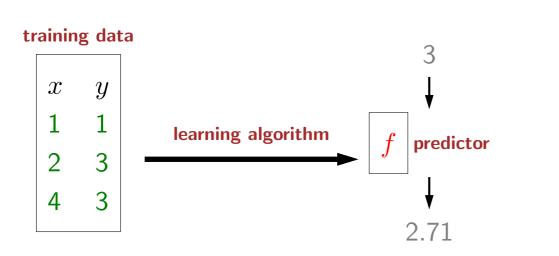


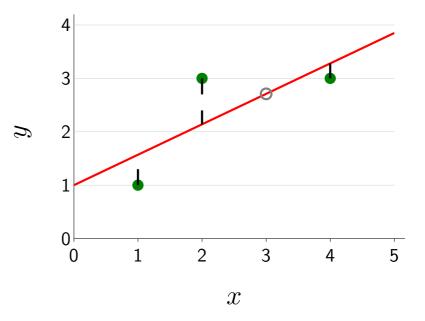
Design decisions:

Which predictors are possible? hypothesis class

How good is a predictor? loss function

How do we compute the best predictor? optimization algorithm





Which predictors are possible? Hypothesis class

How good is a predictor? Loss function

How to compute best predictor? **Optimization algorithm** Linear functions $\mathcal{F} = \{f_{\mathbf{w}}(x) = \mathbf{w} \cdot \phi(x)\}, \phi(x) = [1, x]$

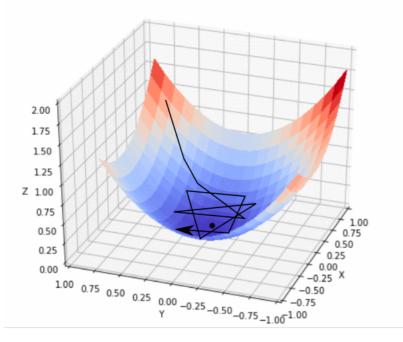
Squared loss $\label{eq:loss} \mathsf{Loss}(x,y,\mathbf{w}) = (f_{\mathbf{w}}(x)-y)^2$

 $\begin{aligned} & \mathsf{Gradient} \ \mathsf{descent} \\ & \mathbf{w} \leftarrow \mathbf{w} - \eta \nabla \mathsf{TrainLoss}(\mathbf{w}) \end{aligned}$

Optimization algorithm: how to compute best?

Goal: $\min_{\mathbf{w}} \mathsf{TrainLoss}(\mathbf{w})$

The gradient $\nabla_{\mathbf{w}} TrainLoss(\mathbf{w})$ is the direction that increases the training loss the most.



Algorithm: gradient descent
Initialize
$$\mathbf{w} = [0, \dots, 0]$$

For $t = 1, \dots, T$: epochs
 $\mathbf{w} \leftarrow \mathbf{w} - \underbrace{\eta}_{\text{step size}} \underbrace{\nabla_{\mathbf{w}} \text{TrainLoss}(\mathbf{w})}_{\text{gradient}}$

Computing the gradient

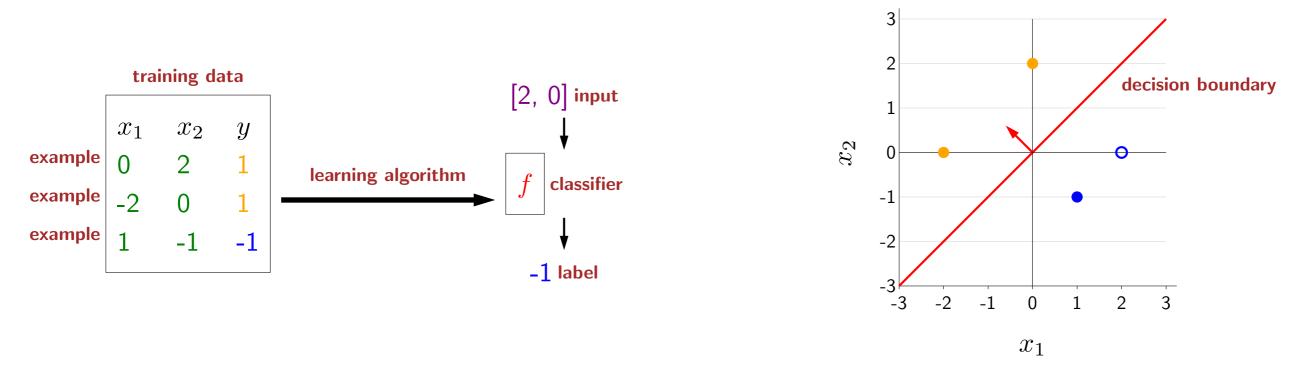
Objective function:

$$\mathsf{TrainLoss}(\mathbf{w}) = \frac{1}{|\mathcal{D}_{\mathsf{train}}|} \sum_{(x,y)\in\mathcal{D}_{\mathsf{train}}} (\mathbf{w}\cdot\phi(x) - y)^2$$

Gradient (use chain rule):

$$\nabla_{\mathbf{w}} \operatorname{TrainLoss}(\mathbf{w}) = \frac{1}{|\mathcal{D}_{\mathsf{train}}|} \sum_{(x,y)\in\mathcal{D}_{\mathsf{train}}} 2(\underbrace{\mathbf{w}\cdot\phi(x)-y}_{\mathsf{prediction-target}})\phi(x)$$

Linear classification framework



Design decisions:

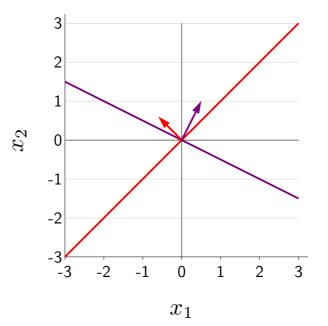
Which classifiers are possible? hypothesis class

How good is a classifier? loss function

How do we compute the best classifier? optimization algorithm

Hypothesis class: which classifiers?

$$\phi(x) = [x_1, x_2]$$
$$f(x) = \operatorname{sign}([-0.6, 0.6] \cdot \phi(x))$$
$$f(x) = \operatorname{sign}([0.5, 1] \cdot \phi(x))$$



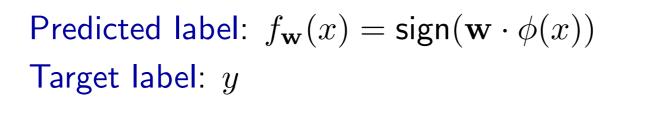
General binary classifier:

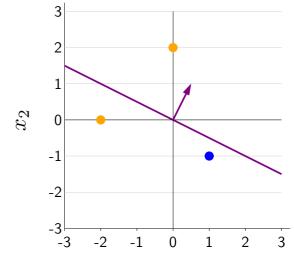
$$f_{\mathbf{w}}(x) = \operatorname{sign}(\mathbf{w} \cdot \phi(x))$$

Hypothesis class:

$$\mathcal{F} = \{ f_{\mathbf{w}} : \mathbf{w} \in \mathbb{R}^2 \}$$

Score and margin





 x_1

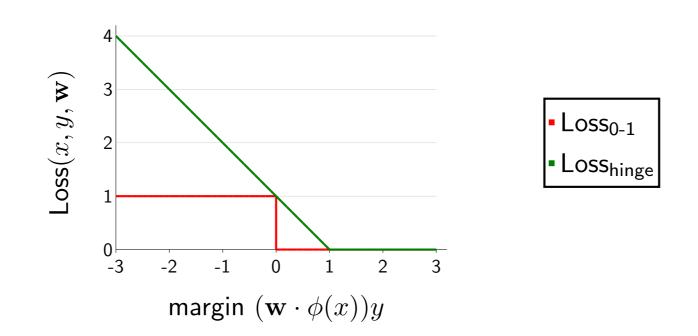
Definition: score-

The score on an example (x, y) is $\mathbf{w} \cdot \phi(x)$, how **confident** we are in predicting +1.

Definition: margin-

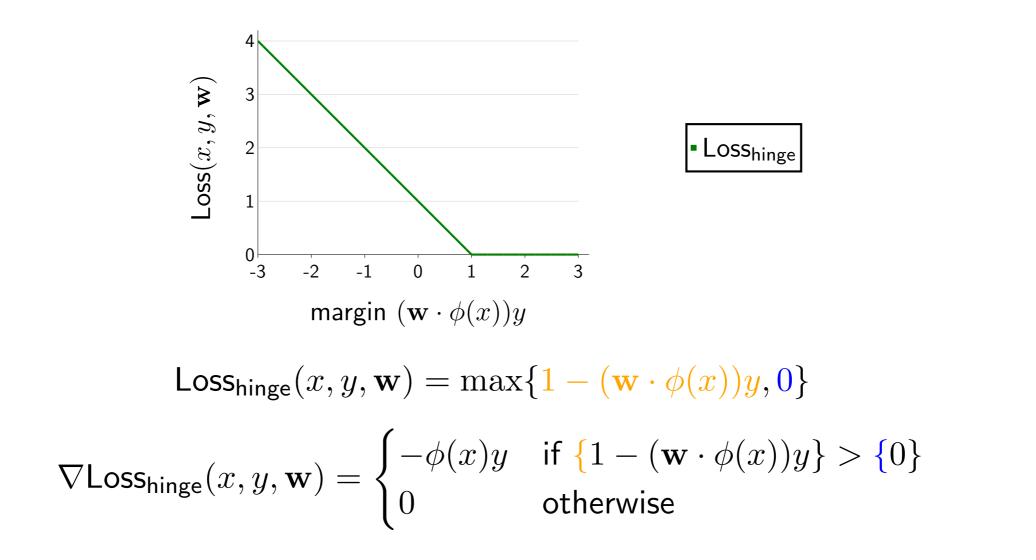
The margin on an example (x, y) is $(\mathbf{w} \cdot \phi(x))y$, how **correct** we are.

Hinge loss

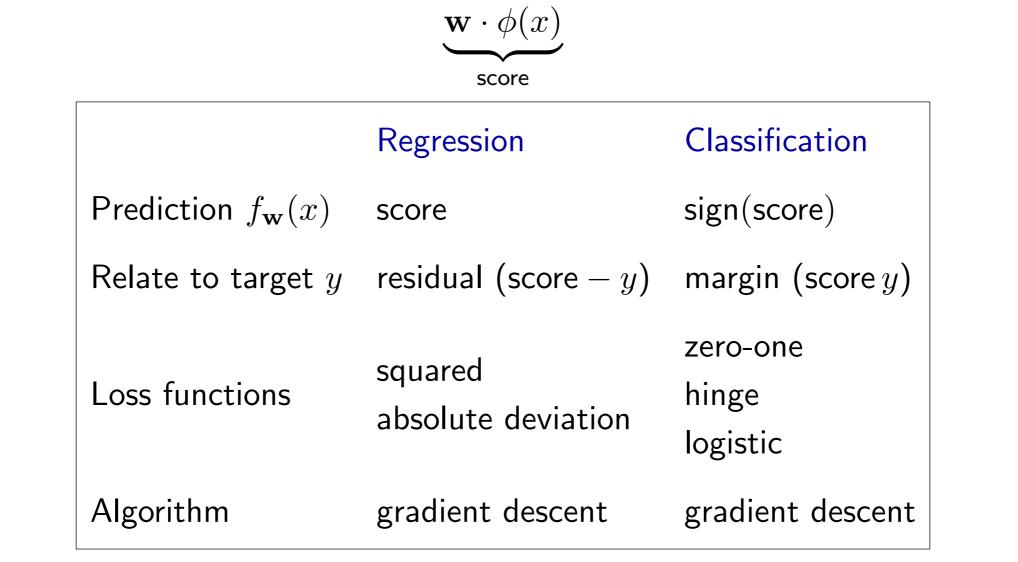


$$\mathsf{Loss}_{\mathsf{hinge}}(x, y, \mathbf{w}) = \max\{1 - (\mathbf{w} \cdot \phi(x))y, 0\}$$

Gradient of the hinge loss



Summary so far

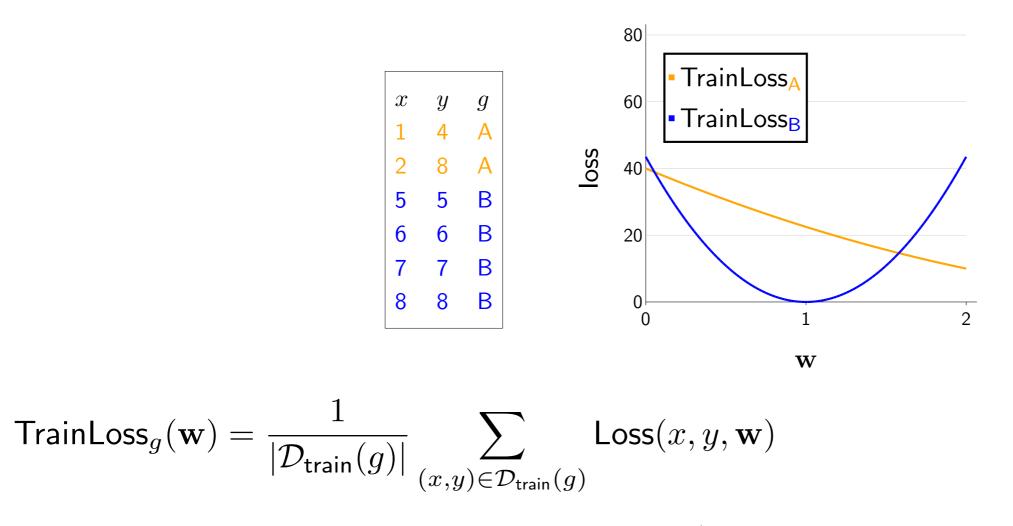


Stochastic gradient descent

$$\mathsf{TrainLoss}(\mathbf{w}) = \frac{1}{|\mathcal{D}_{\mathsf{train}}|} \sum_{(x,y)\in\mathcal{D}_{\mathsf{train}}} \mathsf{Loss}(x,y,\mathbf{w})$$

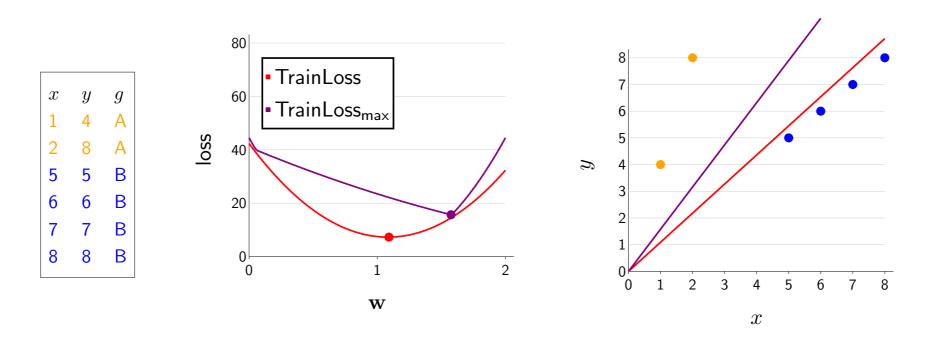
Algorithm: stochastic gradient descent Initialize $\mathbf{w} = [0, \dots, 0]$ For $t = 1, \dots, T$: For $(x, y) \in \mathcal{D}_{train}$: $\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla_{\mathbf{w}} \mathsf{Loss}(x, y, \mathbf{w})$

Per-group loss



 $\begin{aligned} \text{TrainLoss}_{\mathsf{A}}(1) &= \frac{1}{2}((1-4)^2 + (2-8)^2) = 22.5\\ \text{TrainLoss}_{\mathsf{B}}(1) &= \frac{1}{4}((5-5)^2 + (6-6)^2 + (7-7)^2 + (8-8)^2) = 0 \end{aligned}$

Summary

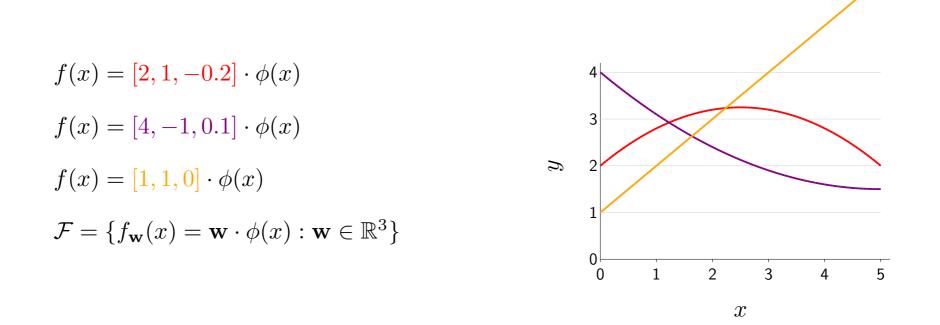


- Maximum group loss \neq average loss
- Group DRO: minimize the maximum group loss
- Many more nuances: intersectionality? don't know groups? overfitting?

Quadratic predictors

 $\phi(x) = [1, x, x^2]$

Example: $\phi(3) = [1, 3, 9]$

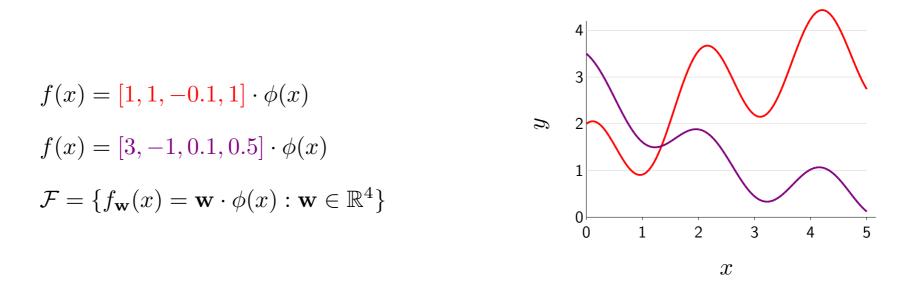


Non-linear predictors just by changing ϕ

Predictors with periodicity structure

 $\phi(x) = [1, x, x^2, \cos(3x)]$

Example: $\phi(2) = [1, 2, 4, 0.96]$



Just throw in any features you want

Linear in what?

Prediction:

$$f_{\mathbf{w}}(x) = \mathbf{w} \cdot \phi(x)$$

Linear in w?YesLinear in $\phi(x)$?Yes

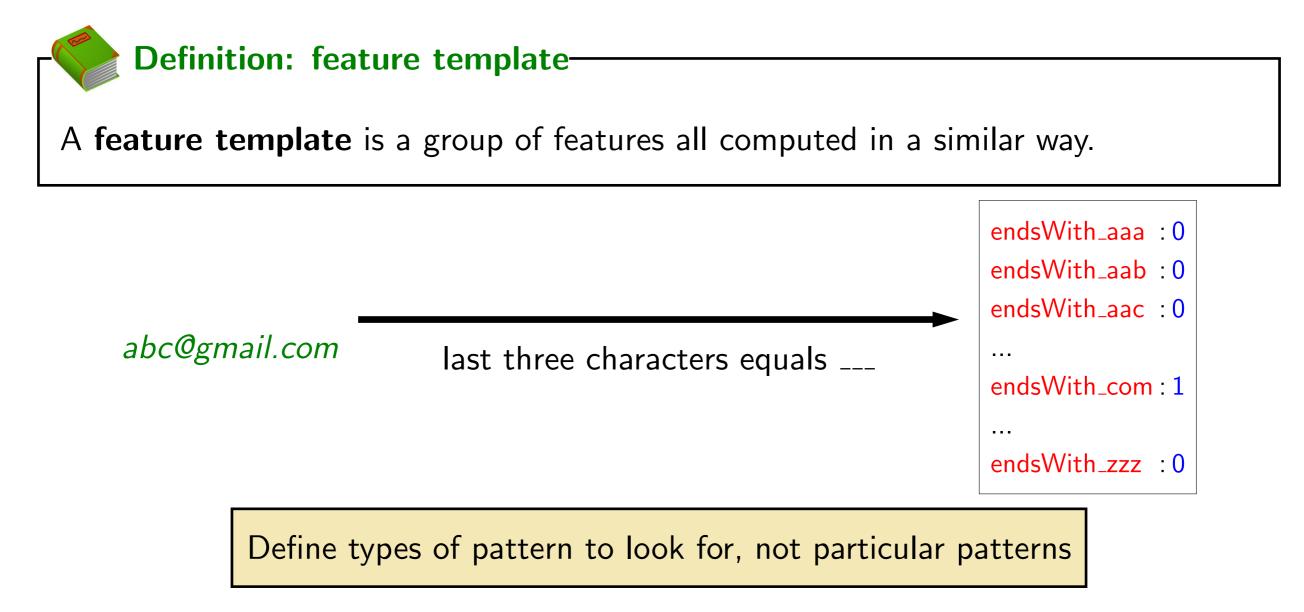
Linear in x? No!

```
Key idea: non-linearity-
```

- Expressivity: score $\mathbf{w} \cdot \phi(x)$ can be a **non-linear** function of x
- Efficiency: score $\mathbf{w} \cdot \phi(x)$ always a linear function of \mathbf{w}

\Diamond	B	0
57	\bigcirc	5
0	5	\bigcirc

Feature templates



Non-linear predictors

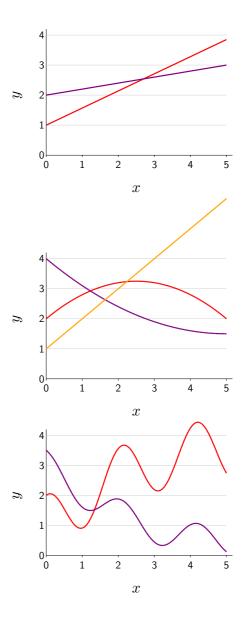
Linear predictors:

$$f_{\mathbf{w}}(x) = \mathbf{w} \cdot \phi(x), \ \phi(x) = [1, x]$$

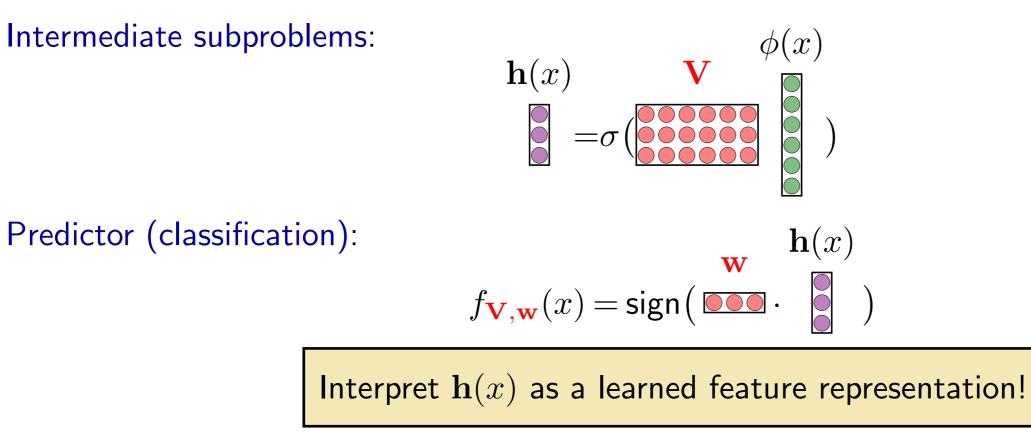
Non-linear (quadratic) predictors: $f_{\mathbf{w}}(x) = \mathbf{w} \cdot \phi(x), \ \phi(x) = [1, x, x^2]$

Non-linear neural networks:

$$f_{\mathbf{w}}(x) = \mathbf{w} \cdot \sigma(\mathbf{V}\phi(x)), \ \phi(x) = [1, x]$$



Two-layer neural networks



Hypothesis class:

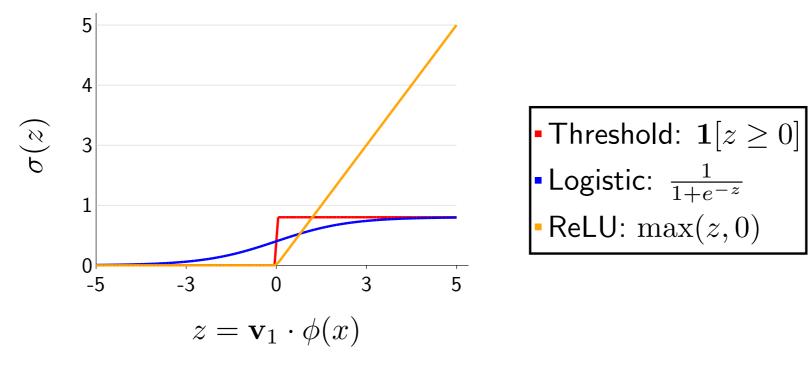
$$\mathcal{F} = \{ f_{\mathbf{V}, \mathbf{w}} : \mathbf{V} \in \mathbb{R}^{k \times d}, \mathbf{w} \in \mathbb{R}^k \}$$

Avoid zero gradients

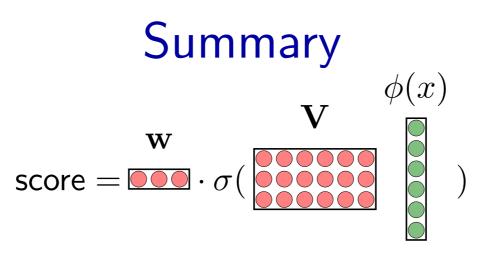
Problem: gradient of $h_1(x)$ with respect to \mathbf{v}_1 is 0

 $h_1(x) = \mathbf{1}[\mathbf{v}_1 \cdot \phi(x) \ge 0]$

Solution: replace with an activation function σ with non-zero gradients



 $h_1(x) = \sigma(\mathbf{v}_1 \cdot \phi(x))$



- Intuition: decompose problem into intermediate parallel subproblems
- Deep networks iterate this decomposition multiple times
- Hypothesis class contains predictors ranging over weights for all layers
- Next up: learning neural networks

Motivation: regression with four-layer neural networks

Loss on one example:

 $\mathsf{Loss}(x, y, \mathbf{V}_1, \mathbf{V}_2, \mathbf{V}_3, \mathbf{w}) = (\mathbf{w} \cdot \sigma(\mathbf{V}_3 \sigma(\mathbf{V}_2 \sigma(\mathbf{V}_1 \phi(x)))) - y)^2$

Stochastic gradient descent:

$$\begin{split} \mathbf{V}_{1} \leftarrow \mathbf{V}_{1} - \eta \nabla_{\mathbf{V}_{1}} \mathsf{Loss}(x, y, \mathbf{V}_{1}, \mathbf{V}_{2}, \mathbf{V}_{3}, \mathbf{w}) \\ \mathbf{V}_{2} \leftarrow \mathbf{V}_{2} - \eta \nabla_{\mathbf{V}_{2}} \mathsf{Loss}(x, y, \mathbf{V}_{1}, \mathbf{V}_{2}, \mathbf{V}_{3}, \mathbf{w}) \\ \mathbf{V}_{3} \leftarrow \mathbf{V}_{3} - \eta \nabla_{\mathbf{V}_{3}} \mathsf{Loss}(x, y, \mathbf{V}_{1}, \mathbf{V}_{2}, \mathbf{V}_{3}, \mathbf{w}) \\ \mathbf{w} \leftarrow \mathbf{w} - \eta \nabla_{\mathbf{w}} \mathsf{Loss}(x, y, \mathbf{V}_{1}, \mathbf{V}_{2}, \mathbf{V}_{3}, \mathbf{w}) \end{split}$$

How to get the gradient without doing manual work?

Computation graphs

$$\mathsf{Loss}(x, y, \mathbf{V}_1, \mathbf{V}_2, \mathbf{V}_3, \mathbf{w}) = (\mathbf{w} \cdot \sigma(\mathbf{V}_3 \sigma(\mathbf{V}_2 \sigma(\mathbf{V}_1 \phi(x)))) - y)^2$$

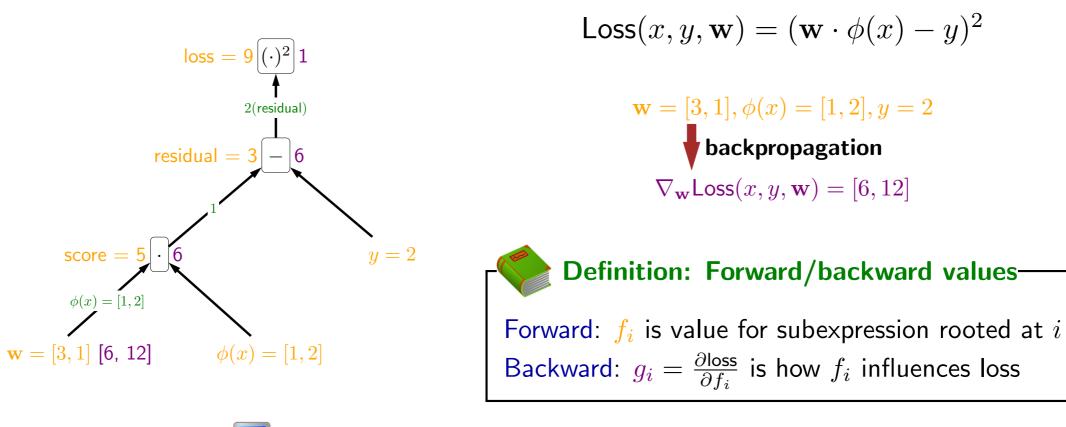
A directed acyclic graph whose root node represents the final mathematical expression and each node represents intermediate subexpressions.

Upshot: compute gradients via general backpropagation algorithm

Purposes:

- Automatically compute gradients (how TensorFlow and PyTorch work)
- Gain insight into modular structure of gradient computations

Backpropagation



Algorithm: backpropagation algorithm—

Forward pass: compute each f_i (from leaves to root) Backward pass: compute each g_i (from root to leaves)

Not the real objective: training loss

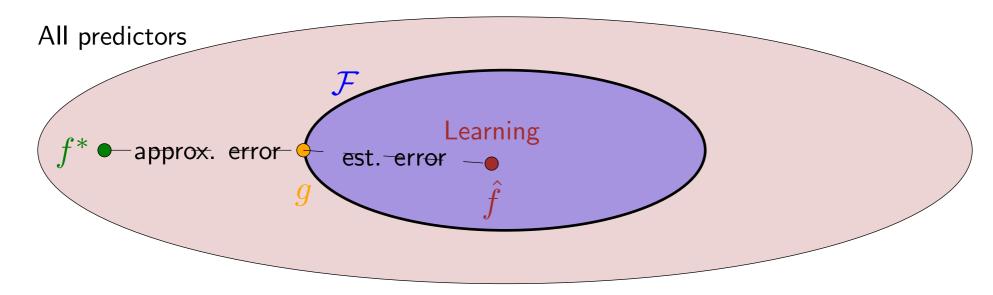
Real objective: loss on unseen future examples

Semi-real objective: test loss

Key idea: keep it simple-

Try to minimize training error, but keep the hypothesis class small.

Approximation and estimation error



- Approximation error: how good is the hypothesis class?
- Estimation error: how good is the learned predictor relative to the potential of the hypothesis class?

$$\operatorname{Err}(\hat{f}) - \operatorname{Err}(f^*) = \underbrace{\operatorname{Err}(\hat{f}) - \operatorname{Err}(g)}_{\text{estimation}} + \underbrace{\operatorname{Err}(g) - \operatorname{Err}(f^*)}_{\text{approximation}}$$

Controlling the norm

Regularized objective:

$$\min_{\mathbf{w}} \mathsf{TrainLoss}(\mathbf{w}) + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

Algorithm: gradient descent
Initialize
$$\mathbf{w} = [0, \dots, 0]$$

For $t = 1, \dots, T$:
 $\mathbf{w} \leftarrow \mathbf{w} - \eta(\nabla_{\mathbf{w}} \operatorname{TrainLoss}(\mathbf{w}) + \lambda \mathbf{w})$

Same as gradient descent, except shrink the weights towards zero by λ .

Hyperparameters

Definition: hyperparameters-

Design decisions (hypothesis class, training objective, optimization algorithm) that need to be made before running the learning algorithm.

How do we choose hyperparameters?

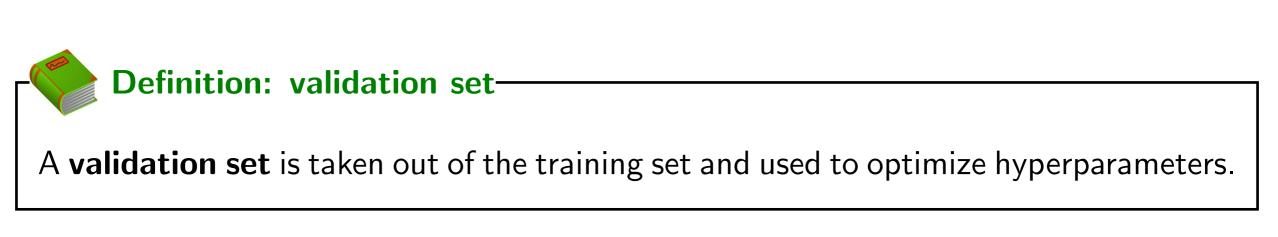
Choose hyperparameters to minimize \mathcal{D}_{train} error?

No - optimum would be to include all features, no regularization, train forever

Choose hyperparameters to minimize \mathcal{D}_{test} error?

No - choosing based on \mathcal{D}_{test} makes it an unreliable estimate of error!

Validation set

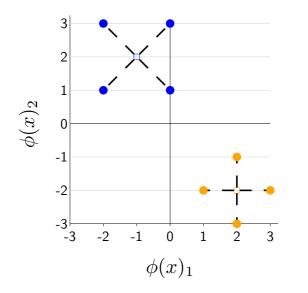


$$\mathcal{D}_{\mathsf{train}} ackslash \mathcal{D}_{\mathsf{val}}$$
 $\mathcal{D}_{\mathsf{val}}$ $\mathcal{D}_{\mathsf{test}}$

For each setting of hyperparameters, train on $\mathcal{D}_{train} \setminus \mathcal{D}_{val}$, evaluate on \mathcal{D}_{val}

Clustering: discover structure in unlabeled data

K-means objective:



assignments z

K-means algorithm:

centroids μ

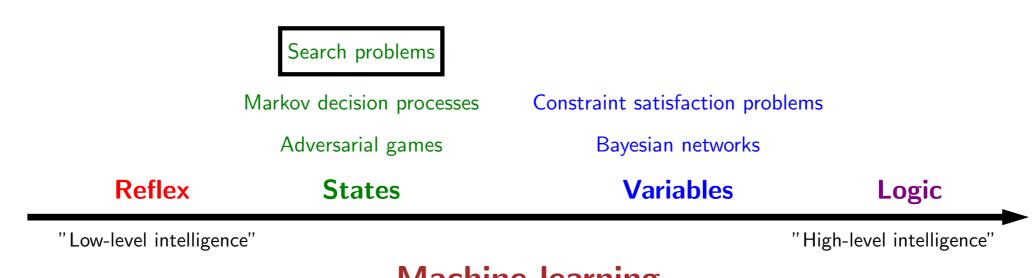
Unsupervised learning use cases:

- Data exploration and discovery
- Providing representations to downstream supervised learning

K-means algorithm

Algorithm: K-means-Initialize $\boldsymbol{\mu} = [\mu_1, \dots, \mu_K]$ randomly. For t = 1, ..., T: Step 1: set assignments \mathbf{z} given $\boldsymbol{\mu}$ For each point $i = 1, \ldots, n$: $\mathbf{z_i} \leftarrow \arg\min_{k=1,\dots,K} \|\phi(x_i) - \mu_k\|^2$ Step 2: set centroids μ given z For each cluster $k = 1, \ldots, K$: $\mu_k \leftarrow \frac{1}{|\{i: \mathbf{z}_i = k\}|} \sum_{i: \mathbf{z}_i = k} \phi(x_i)$

Course plan



Machine learning

Beyond reflex

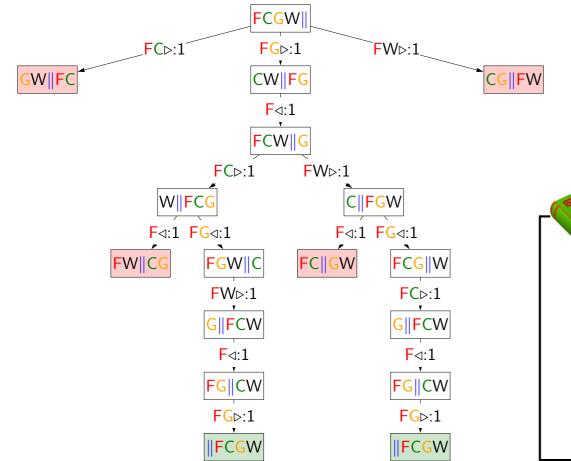
Classifier (reflex-based models):

$$x \longrightarrow f \implies \text{single action } y \in \{-1, +1\}$$

Search problem (state-based models):

Key: need to consider future consequences of an action!

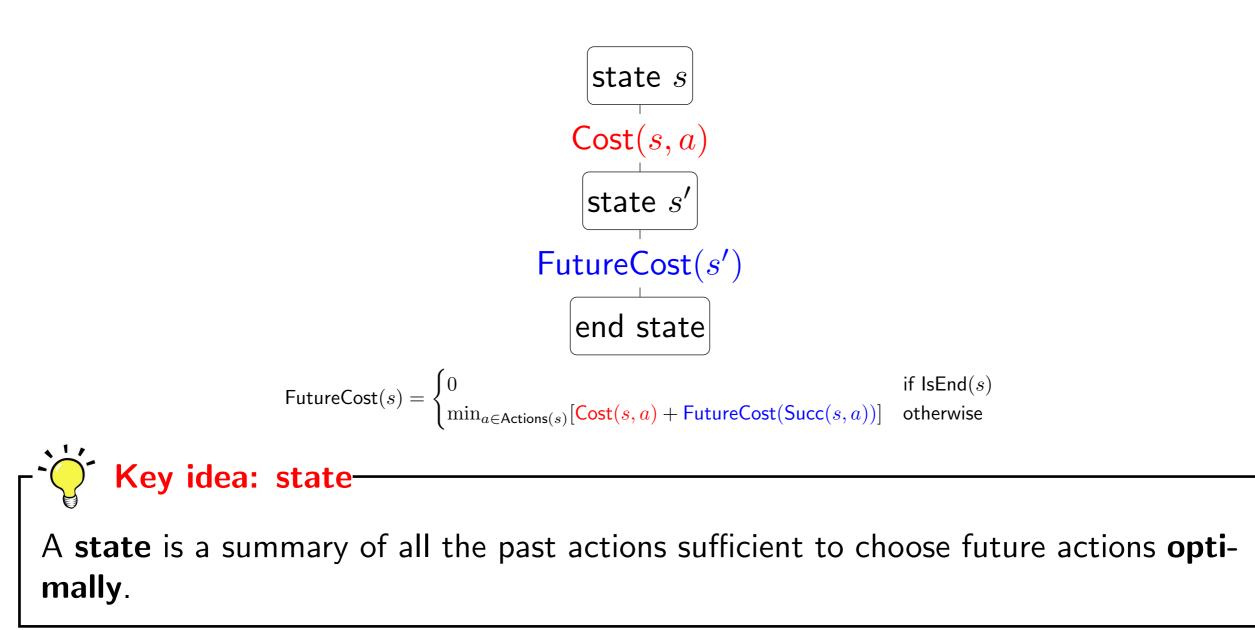
Search problem



Definition: search problem-

- s_{start} : starting state
- Actions(s): possible actions
- Cost(s, a): action cost
- Succ(s, a): successor
- IsEnd(s): reached end state?

Dynamic Programming Review



Dynamic programming

Algorithm: dynamic programming def DynamicProgramming(s): If already computed for s, return cached answer. If IsEnd(s): return solution For each action $a \in Actions(s)$: ...

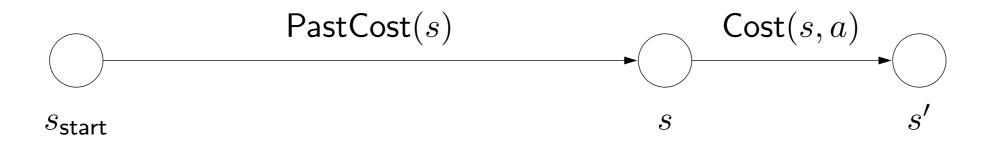
[semi-live solution: Dynamic Programming]

Assumption: acyclicity

The state graph defined by Actions(s) and Succ(s, a) is acyclic.

Ordering the states

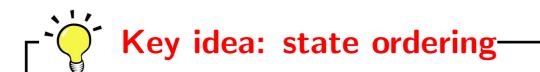
Observation: prefixes of optimal path are optimal



Key: if graph is acyclic, dynamic programming makes sure we compute $\mathsf{PastCost}(s)$ before $\mathsf{PastCost}(s')$

If graph is cyclic, then we need another mechanism to order states...

Uniform cost search (UCS)

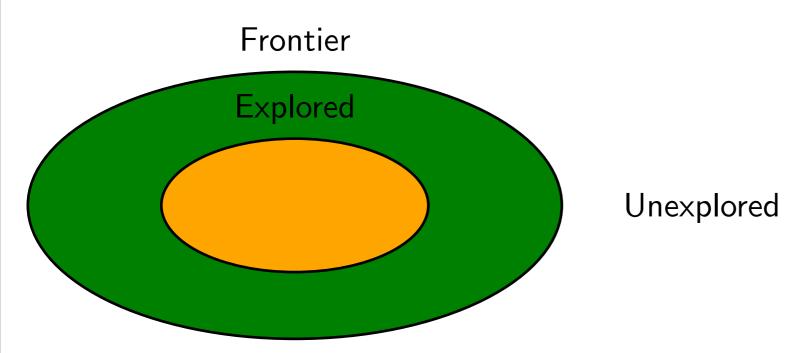


UCS enumerates states in order of increasing past cost.

All action costs are non-negative: $Cost(s, a) \ge 0$.

UCS in action:

High-level strategy



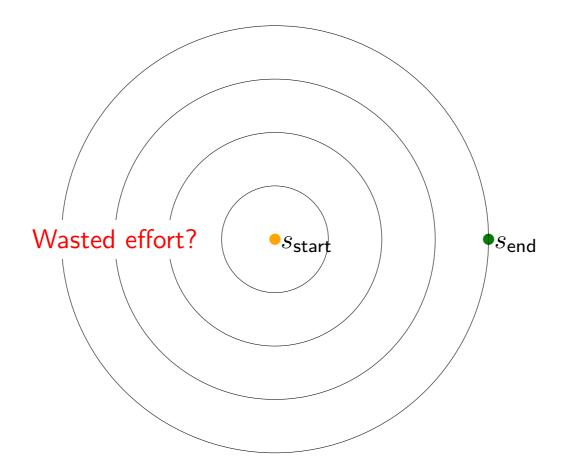
- Explored: states we've found the optimal path to
- Frontier: states we've seen, still figuring out how to get there cheaply
- Unexplored: states we haven't seen

Uniform cost search (UCS)

```
Algorithm: uniform cost search [Dijkstra, 1956]-
Add s_{\text{start}} to frontier (priority queue)
Repeat until frontier is empty:
    Remove s with smallest priority p from frontier
    If lsEnd(s): return solution
    Add s to explored
    For each action a \in Actions(s):
        Get successor s' \leftarrow \mathsf{Succ}(s, a)
        If s' already in explored: continue
        Update frontier with s' and priority p + Cost(s, a)
```

[semi-live solution: Uniform Cost Search]

Can uniform cost search be improved?

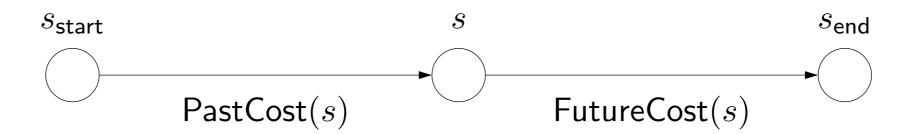


Problem: UCS orders states by cost from s_{start} to s

Goal: take into account cost from s to s_{end}

Exploring states

UCS: explore states in order of PastCost(s)



Ideal: explore in order of PastCost(s) + FutureCost(s)

A*: explore in order of PastCost(s) + h(s)

Definition: Heuristic function

A heuristic h(s) is any estimate of FutureCost(s).

A* search

Algorithm: A* search [Hart/Nilsson/Raphael, 1968] Run uniform cost search with modified edge costs: Cost'(s, a) = Cost(s, a) + h(Succ(s, a)) - h(s)

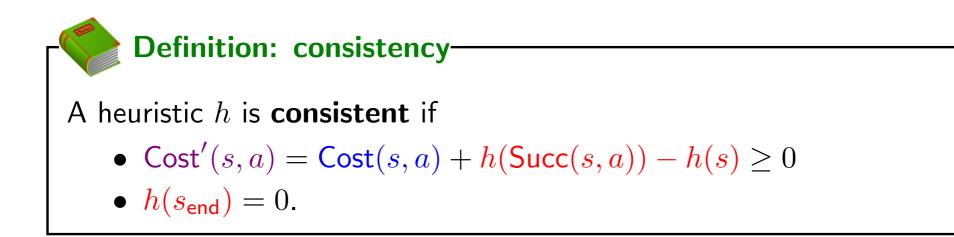
Intuition: add a penalty for how much action a takes us away from the end state Example:

$$A \stackrel{2}{\leftarrow} B \stackrel{2}{\leftarrow} C \stackrel{0}{\leftarrow} D \stackrel{0}{\leftarrow} E$$

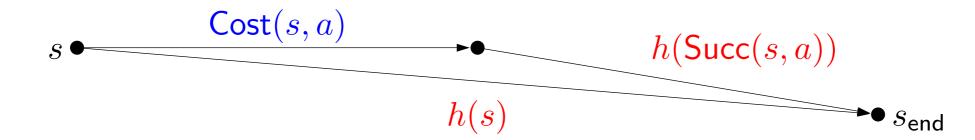
$$h(s) = 4 \qquad 3 \qquad 2 \qquad 1 \qquad 0$$

Cost'(C, B) = Cost(C, B) + h(B) - h(C) = 1 + (3 - 2) = 2

Consistent heuristics



Condition 1: needed for UCS to work (triangle inequality).



Condition 2: FutureCost $(s_{end}) = 0$ so match it.

Correctness of A*

If h is consistent, A* returns the minimum cost path.

Efficiency of A*

- Theorem: efficiency of A* A* explores all states s satisfying PastCost $(s) \leq PastCost(s_{end}) - h(s)$

Interpretation: the larger h(s), the better

Proof: A* explores all s such that

 $\mathsf{PastCost}(s) + \mathbf{h}(s)$

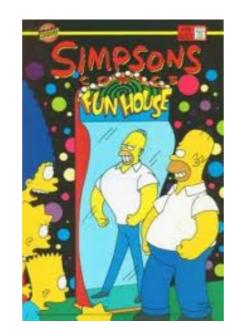
\leq

 $\mathsf{PastCost}(s_{\mathsf{end}})$

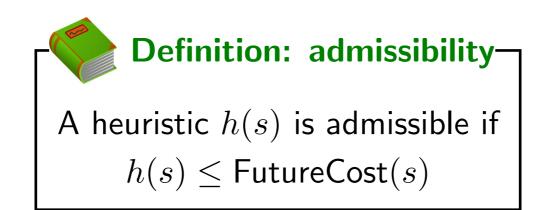
A* search

Key idea: distortion-

A* distorts edge costs to favor end states.



Admissibility



Intuition: admissible heuristics are optimistic

Theorem: consistency implies admissibility If a heuristic h(s) is **consistent**, then h(s) is **admissible**.

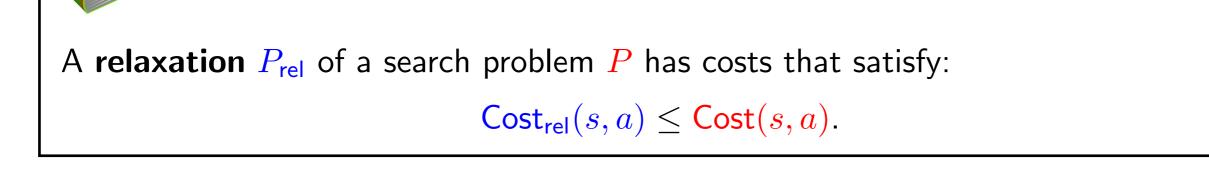
Proof: use induction on FutureCost(s)

Relaxation

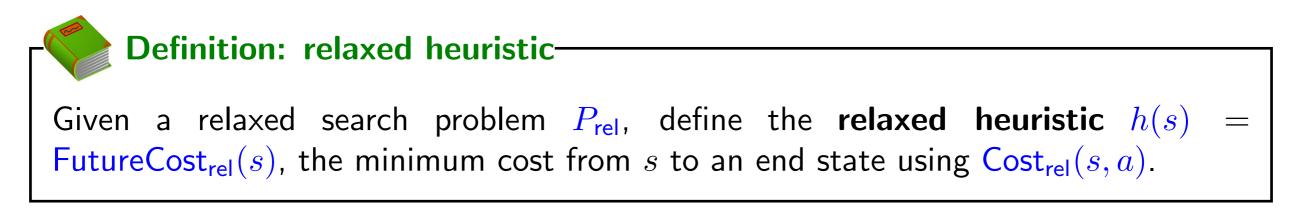
Intuition: ideally, use h(s) = FutureCost(s), but that's as hard as solving the original problem.

Constraints make life hard. Get rid of them. But this is just for the heuristic!

General framework



Definition: relaxed search problem-



Max of two heuristics

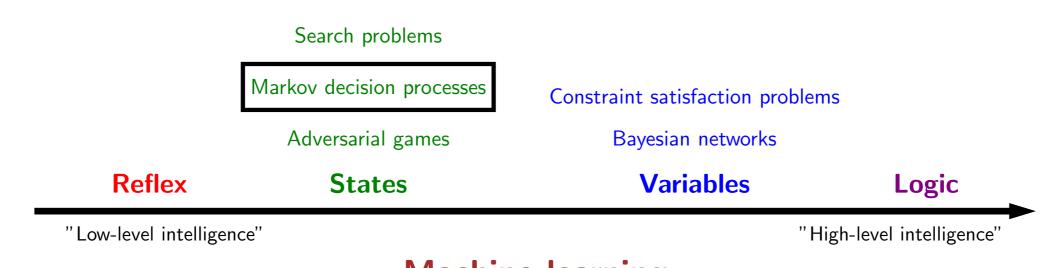
How do we combine two heuristics?

Proposition: max heuristic-

Suppose $h_1(s)$ and $h_2(s)$ are consistent. Then $h(s) = \max\{h_1(s), h_2(s)\}$ is consistent.

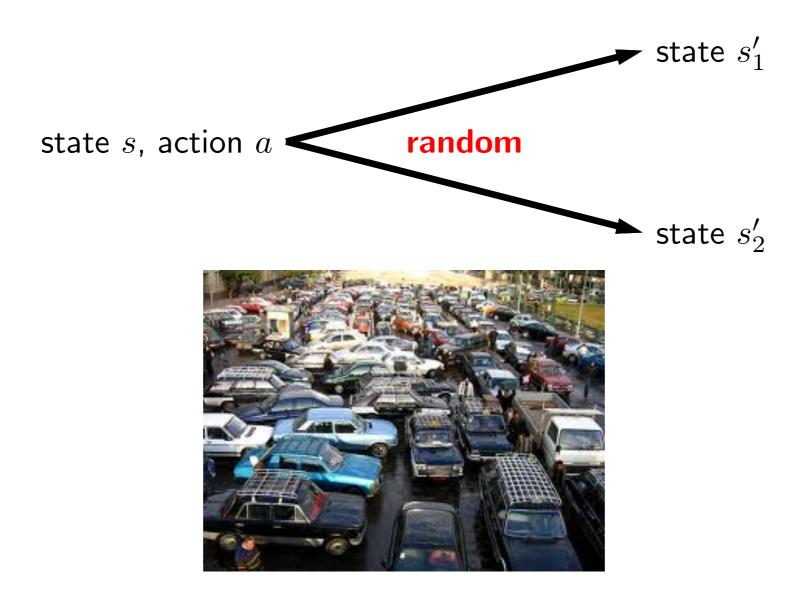
Proof: exercise

Course plan



Machine learning

Uncertainty in the real world



Markov decision process

Definition: Markov decision process-

```
States: the set of states
```

```
s_{\text{start}} \in \text{States: starting state}
```

```
Actions(s): possible actions from state s
```

```
T(s, a, s'): probability of s' if take action a in state s
```

```
Reward(s, a, s'): reward for the transition (s, a, s')
```

```
IsEnd(s): whether at end of game
```

```
0 \leq \gamma \leq 1: discount factor (default: 1)
```

What is a solution?

Search problem: path (sequence of actions)

MDP:

Definition: policy-

A **policy** π is a mapping from each state $s \in \text{States to an action } a \in \text{Actions}(s)$.

Γ	Example:	volcano	crossing
	s	$\pi(s)$	
	(1,1)	S	
	(2,1)	Е	
	(3,1)	Ν	

Evaluating a policy

Definition: utility-

Following a policy yields a random path.

The **utility** of a policy is the (discounted) sum of the rewards on the path (this is a random variable).

Path	Utility
[in; stay, 4, end]	4
[in; stay, 4, in; stay, 4, in; stay, 4, end]	12
[in; stay, 4, in; stay, 4, end]	8
[in; stay, 4, in; stay, 4, in; stay, 4, in; stay, 4, end]	16

Definition: value (expected utility)[.]

The value of a policy at a state is the expected utility.

Value: 12

Discounting

- Characteristics - Definition: utility-

Path: $s_0, a_1r_1s_1, a_2r_2s_2, \ldots$ (action, reward, new state). The **utility** with discount γ is $u_1 = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots$

Discount $\gamma = 1$ (save for the future):

[stay, stay, stay, stay]: 4 + 4 + 4 = 16

Discount $\gamma = 0$ (live in the moment):

[stay, stay, stay, stay]: $4 + 0 \cdot (4 + \cdots) = 4$

Discount $\gamma = 0.5$ (balanced life):

[stay, stay, stay, stay]: $4 + \frac{1}{2} \cdot 4 + \frac{1}{4} \cdot 4 + \frac{1}{8} \cdot 4 = 7.5$

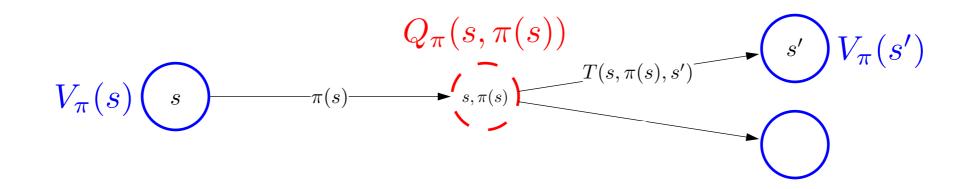
Policy evaluation

Definition: value of a policy-

Let $V_{\pi}(s)$ be the expected utility received by following policy π from state s.

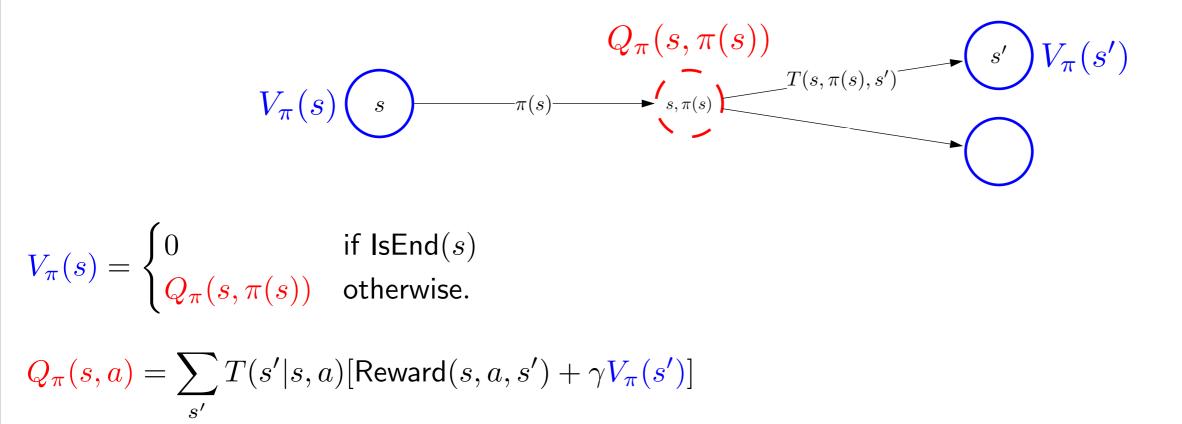
Definition: Q-value of a policy-

Let $Q_{\pi}(s, a)$ be the expected utility of taking action a from state s, and then following policy π .



Policy evaluation

Plan: define recurrences relating value and Q-value



Policy evaluation

Start with arbitrary policy values and repeatedly apply recurrences to converge to true values.

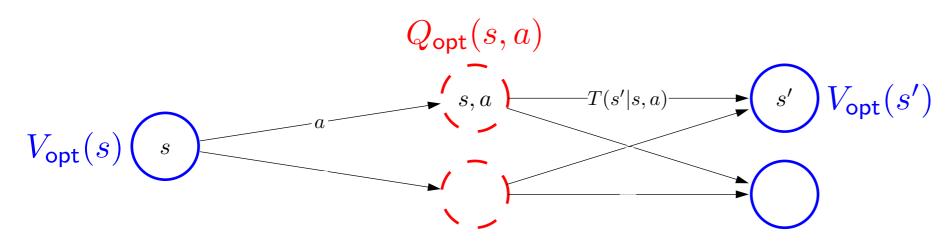
Algorithm: policy evaluation Initialize $V_{\pi}^{(0)}(s) \leftarrow 0$ for all states s. For iteration $t = 1, \dots, t_{\mathsf{PE}}$: For each state s: $V_{\pi}^{(t)}(s) \leftarrow \sum_{s'} T(s'|s, \pi(s))[\mathsf{Reward}(s, \pi(s), s') + \gamma V_{\pi}^{(t-1)}(s')]$ $Q^{(t-1)}(s, \pi(s))$

Optimal value and policy

Goal: try to get directly at maximum expected utility

The **optimal value** $V_{opt}(s)$ is the maximum value attained by any policy.

Optimal values and Q-values



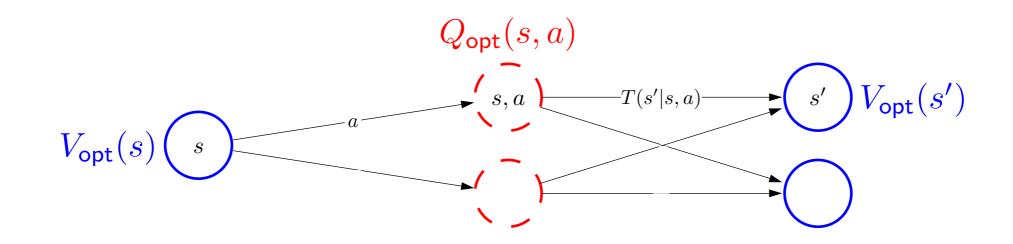
Optimal value if take action a in state s:

$$Q_{\mathsf{opt}}(s, a) = \sum_{s'} T(s, a, s') [\mathsf{Reward}(s, a, s') + \gamma V_{\mathsf{opt}}(s')].$$

Optimal value from state s:

$$V_{\mathsf{opt}}(s) = \begin{cases} 0 & \text{if } \mathsf{lsEnd}(s) \\ \max_{a \in \mathsf{Actions}(s)} Q_{\mathsf{opt}}(s, a) & \text{otherwise.} \end{cases}$$

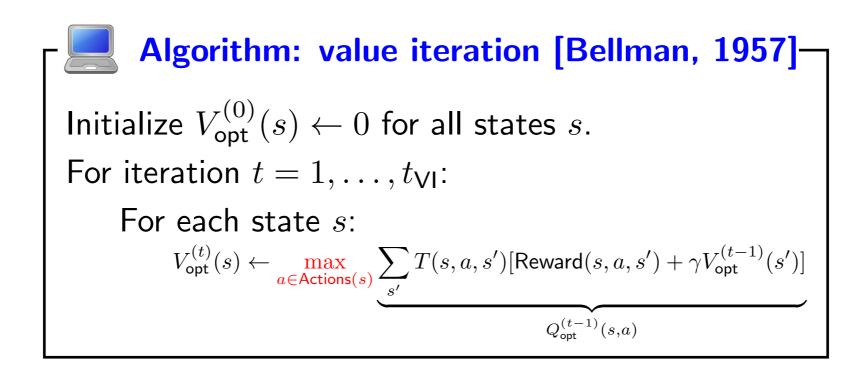
Optimal policies



Given Q_{opt} , read off the optimal policy:

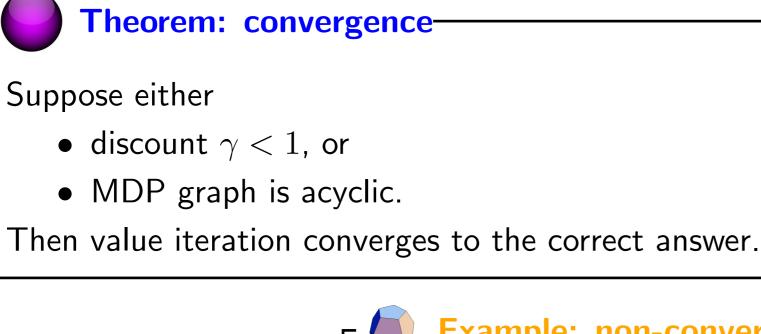
$$\pi_{\mathsf{opt}}(s) = \arg \max_{a \in \mathsf{Actions}(s)} Q_{\mathsf{opt}}(s, a)$$

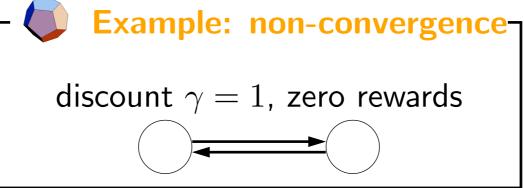
Value iteration



Time: $O(t_{VI}SAS')$

[semi-live solution]





Unknown transitions and rewards

Definition: Markov decision process-

States: the set of states

 $s_{\mathsf{start}} \in \mathsf{States:} \ \mathsf{starting} \ \mathsf{state}$

Actions(s): possible actions from state s

IsEnd(s): whether at end of game $0 \le \gamma \le 1$: discount factor (default: 1)

reinforcement learning!

From MDPs to reinforcement learning

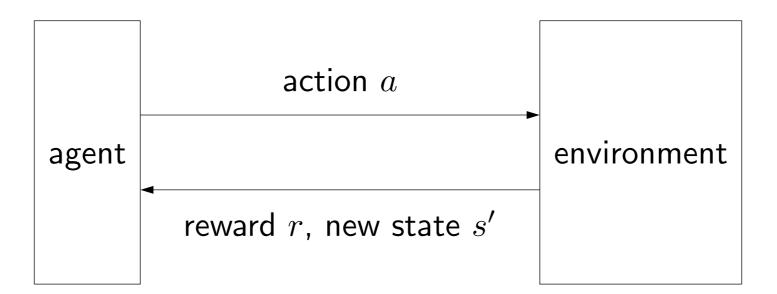
Markov decision process (offline)

- Have mental model of how the world works.
- Find policy to collect maximum rewards.

Reinforcement learning (online)-

- Don't know how the world works.
- Perform actions in the world to find out and collect rewards.

Reinforcement learning framework



For t = 1, 2, 3, ...Choose action $a_t = \pi_{act}(s_{t-1})$ (how?) Receive reward r_t and observe new state s_t Update parameters (how?)

Model-Based Value Iteration

Data: $s_0; a_1, r_1, s_1; a_2, r_2, s_2; a_3, r_3, s_3; \ldots; a_n, r_n, s_n$

Fig. Key idea: model-based learning Estimate the MDP: T(s, a, s') and Reward(s, a, s')

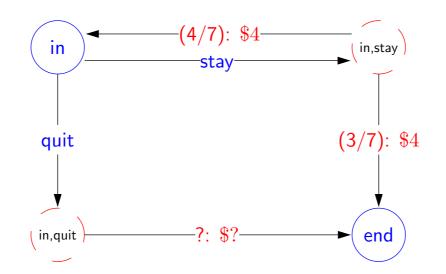
Transitions:

$$\hat{T}(s, a, s') = \frac{\# \operatorname{times} (s, a, s') \operatorname{occurs}}{\# \operatorname{times} (s, a) \operatorname{occurs}}$$

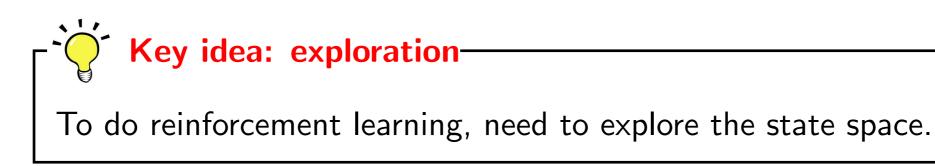
Rewards:

$$\widehat{\mathsf{Reward}}(s, a, s') = r \text{ in } (s, a, r, s')$$

Problem



Problem: won't even see (s, a) if $a \neq \pi(s)$ (a = quit)



Solution: need π to explore explicitly (more on this later)

From model-based to model-free

$$\hat{Q}_{\mathsf{opt}}(s,a) = \sum_{s'} \hat{T}(s,a,s') [\widehat{\mathsf{Reward}}(s,a,s') + \gamma \hat{V}_{\mathsf{opt}}(s')]$$

All that matters for prediction is (estimate of) $Q_{opt}(s, a)$.

Key idea: model-free learning
Try to estimate
$$Q_{opt}(s, a)$$
 directly.

Model-free Monte Carlo

Data (following policy π):

```
s_0; a_1, r_1, s_1; a_2, r_2, s_2; a_3, r_3, s_3; \ldots; a_n, r_n, s_n
```

Recall:

 $Q_{\pi}(s, a)$ is expected utility starting at s, first taking action a, and then following policy π Utility:

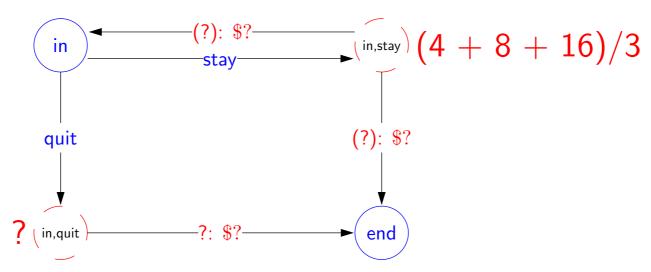
$$u_t = r_t + \gamma \cdot r_{t+1} + \gamma^2 \cdot r_{t+2} + \cdots$$

Estimate:

$$\hat{Q}_{\pi}(s,a) = \mathsf{average} \,\, \mathsf{of} \,\, u_t \,\, \mathsf{where} \,\, s_{t-1} = s, a_t = a$$

(and s, a doesn't occur in s_0, \dots, s_{t-2})

Model-free Monte Carlo



Data (following policy $\pi(s) = \text{stay}$):

[in; stay, 4, in; stay, 4, in; stay, 4, in; stay, 4, end]

Note: we are estimating Q_{π} now, not Q_{opt}

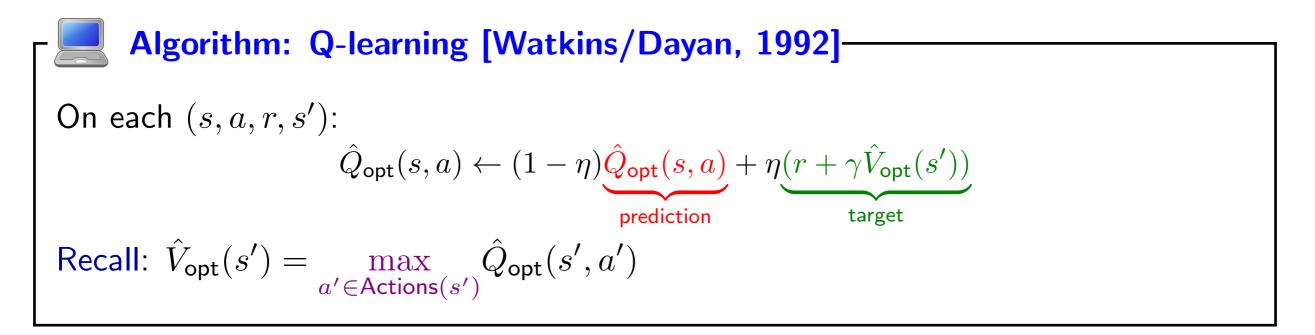
Definition: on-policy versus off-policy-

On-policy: estimate the value of data-generating policy Off-policy: estimate the value of another policy

Q-learning

Bellman optimality equation:

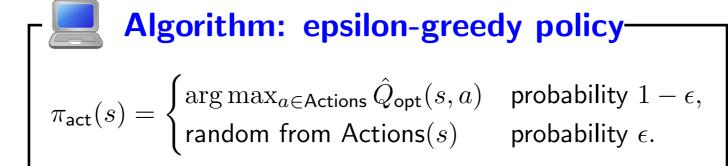
$$Q_{\mathsf{opt}}(s, a) = \sum_{s'} T(s, a, s') [\mathsf{Reward}(s, a, s') + \gamma V_{\mathsf{opt}}(s')]$$

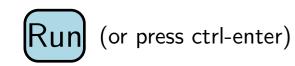


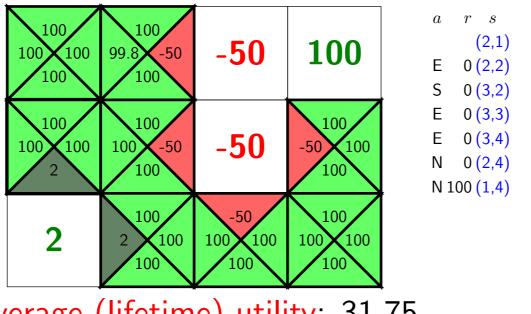
Exploration/exploitation tradeoff

Examples from life: restaurants, routes, research

Epsilon-greedy





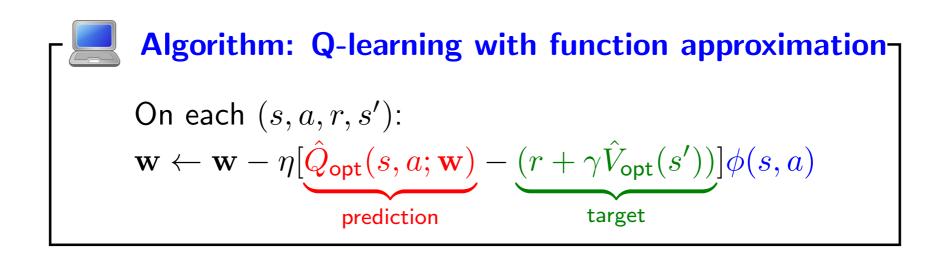


Average (lifetime) utility: 31.75

Function approximation

Key idea: linear regression model Define **features** $\phi(s, a)$ and **weights w**: $\hat{Q}_{opt}(s, a; \mathbf{w}) = \mathbf{w} \cdot \phi(s, a)$

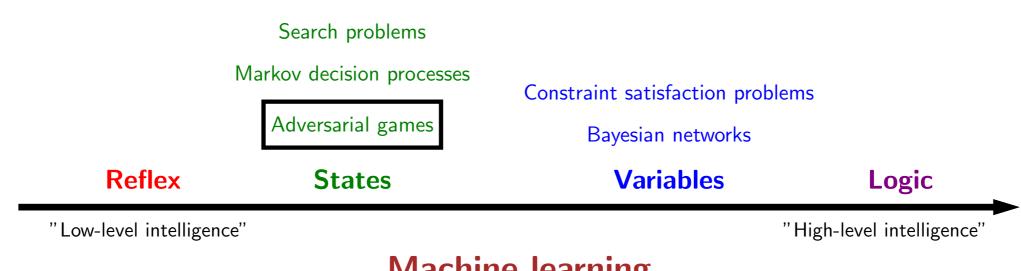
Function approximation



Implied objective function:

$$(\underbrace{\hat{Q}_{\mathsf{opt}}(s, a; \mathbf{w})}_{\mathsf{prediction}} - \underbrace{(r + \gamma \hat{V}_{\mathsf{opt}}(s'))}_{\mathsf{target}})^2$$

Course plan

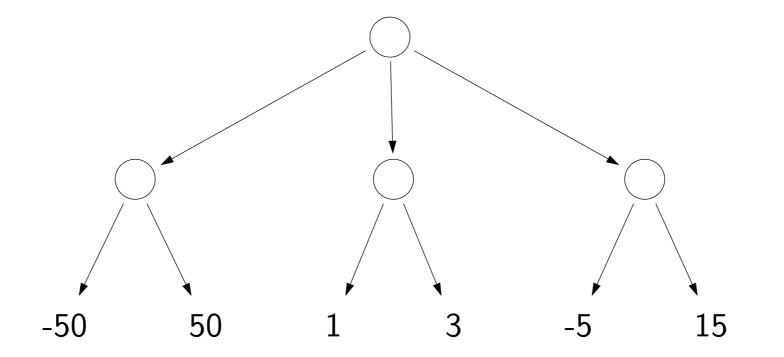


Machine learning

Game tree

Each node is a decision point for a player.

Each root-to-leaf path is a possible outcome of the game.



Two-player zero-sum games

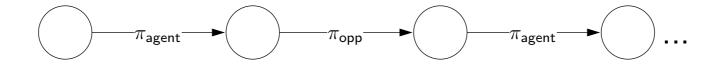
 $\mathsf{Players} = \{\mathsf{agent}, \mathsf{opp}\}$

Definition: two-player zero-sum game-

 s_{start} : starting state Actions(s): possible actions from state sSucc(s, a): resulting state if choose action a in state sIsEnd(s): whether s is an end state (game over) Utility(s): agent's utility for end state sPlayer(s) \in Players: player who controls state s

Game evaluation recurrence

Analogy: recurrence for policy evaluation in MDPs

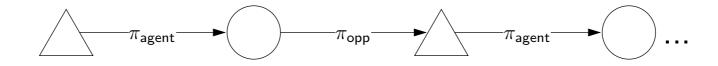


Value of the game:

$$V_{\text{eval}}(s) = \begin{cases} \text{Utility}(s) & \text{IsEnd}(s) \\ \sum_{a \in \text{Actions}(s)} \pi_{\text{agent}}(s, a) V_{\text{eval}}(\text{Succ}(s, a)) & \text{Player}(s) = \text{agent} \\ \sum_{a \in \text{Actions}(s)} \pi_{\text{opp}}(s, a) V_{\text{eval}}(\text{Succ}(s, a)) & \text{Player}(s) = \text{opp} \end{cases}$$

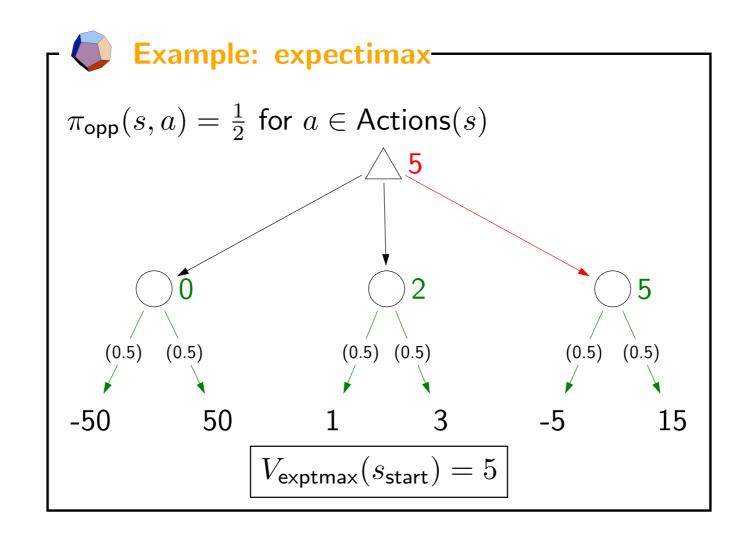
Expectimax recurrence

Analogy: recurrence for value iteration in MDPs



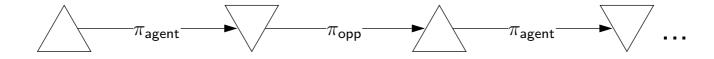
$$V_{\text{exptmax}}(s) = \begin{cases} \text{Utility}(s) & \text{IsEnd}(s) \\ \max_{a \in \text{Actions}(s)} V_{\text{exptmax}}(\text{Succ}(s, a)) & \text{Player}(s) = \text{agent} \\ \sum_{a \in \text{Actions}(s)} \pi_{\text{opp}}(s, a) V_{\text{exptmax}}(\text{Succ}(s, a)) & \text{Player}(s) = \text{opp} \end{cases}$$

Expectimax example



Minimax recurrence

No analogy in MDPs:

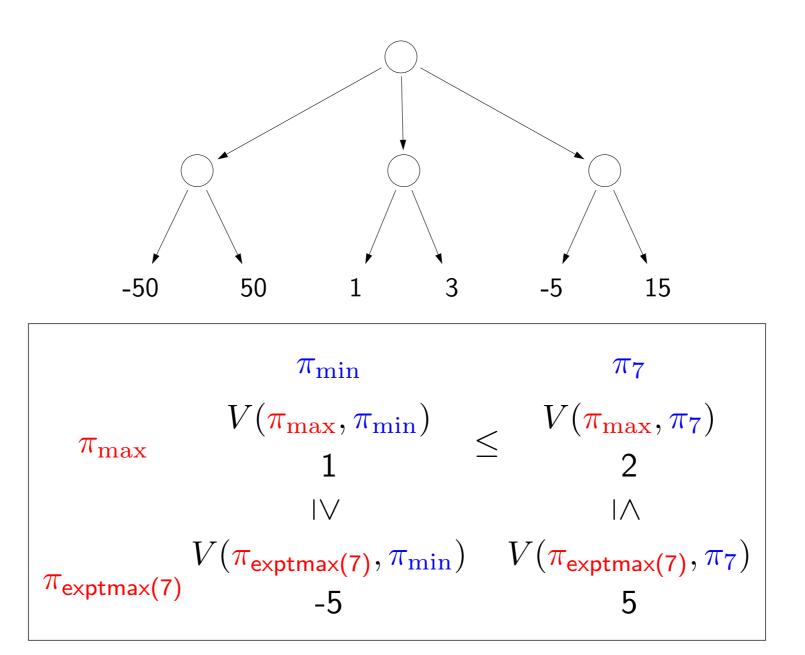


$$V_{\mathsf{minmax}}(s) = \begin{cases} \mathsf{Utility}(s) & \mathsf{IsEnd}(s) \\ \max_{a \in \mathsf{Actions}(s)} V_{\mathsf{minmax}}(\mathsf{Succ}(s, a)) & \mathsf{Player}(s) = \mathsf{agent} \\ \min_{a \in \mathsf{Actions}(s)} V_{\mathsf{minmax}}(\mathsf{Succ}(s, a)) & \mathsf{Player}(s) = \mathsf{opp} \end{cases}$$

Minimax example



Relationship between game values



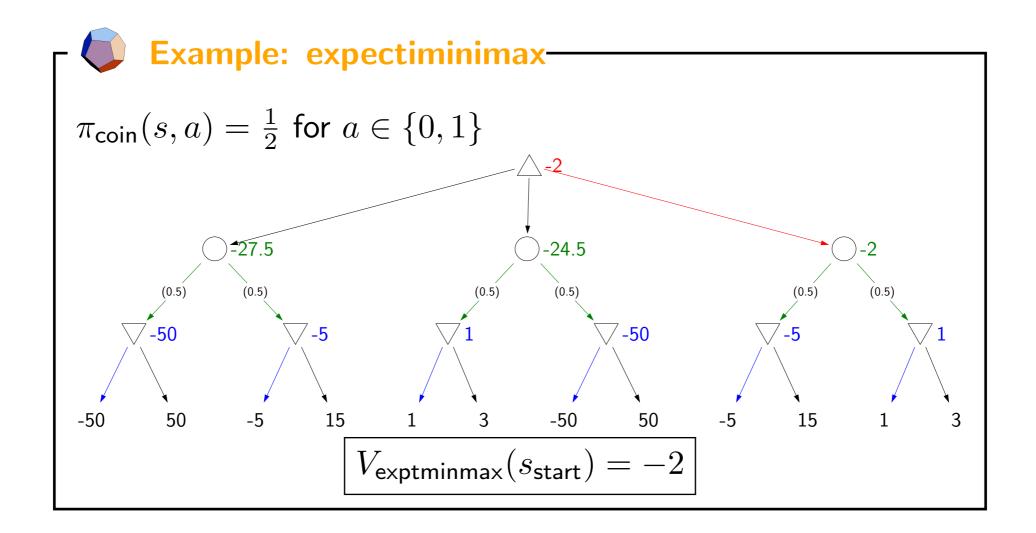
Expectiminimax recurrence

 $\mathsf{Players} = \{\mathsf{agent}, \mathsf{opp}, \mathsf{coin}\}$



$$V_{\text{exptminmax}}(s) = \begin{cases} \mathsf{Utility}(s) & \mathsf{IsEnd}(s) \\ \max_{a \in \mathsf{Actions}(s)} V_{\text{exptminmax}}(\mathsf{Succ}(s, a)) & \mathsf{Player}(s) = \mathsf{agent} \\ \min_{a \in \mathsf{Actions}(s)} V_{\text{exptminmax}}(\mathsf{Succ}(s, a)) & \mathsf{Player}(s) = \mathsf{opp} \\ \sum_{a \in \mathsf{Actions}(s)} \pi_{\mathsf{coin}}(s, a) V_{\mathsf{exptminmax}}(\mathsf{Succ}(s, a)) & \mathsf{Player}(s) = \mathsf{coin} \end{cases}$$

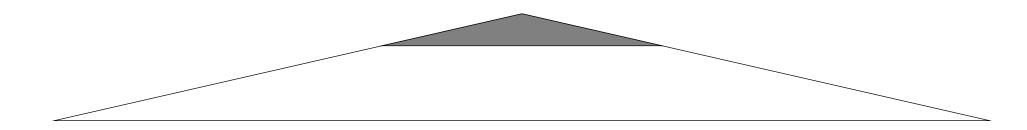
Expectiminimax example



Speeding up minimax

- Evaluation functions: use domain-specific knowledge, compute approximate answer
- Alpha-beta pruning: general-purpose, compute exact answer

Depth-limited search



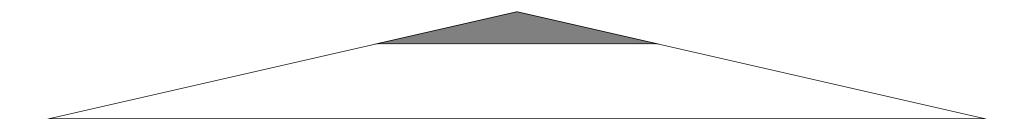
Limited depth tree search (stop at maximum depth d_{max}):

 $V_{\min\max}(s, d) = \begin{cases} \mathsf{Utility}(s) & \mathsf{IsEnd}(s) \\ \mathsf{Eval}(s) & d = 0 \\ \max_{a \in \mathsf{Actions}(s)} V_{\min\max}(\mathsf{Succ}(s, a), d) & \mathsf{Player}(s) = \mathsf{agent} \\ \min_{a \in \mathsf{Actions}(s)} V_{\min\max}(\mathsf{Succ}(s, a), d - 1) & \mathsf{Player}(s) = \mathsf{opp} \end{cases}$

Use: at state s, call $V_{minmax}(s, d_{max})$

Convention: decrement depth at last player's turn

Evaluation functions



An evaluation function Eval(s) is a (possibly very weak) estimate of the value $V_{\min\max}(s)$.

Analogy: FutureCost(s) in search problems

Pruning principle

Choose A or B with maximum value:

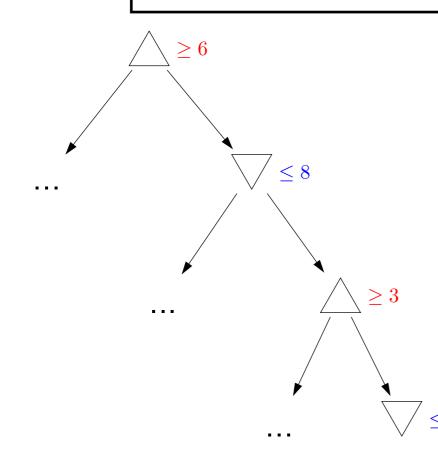
Maintain lower and upper bounds on values.

If intervals don't overlap non-trivially, then can choose optimally without further work.

Alpha-beta pruning

🤶 Key idea: optimal path-

The optimal path is path that minimax policies take. Values of all nodes on path are the same.



- *a_s*: lower bound on value of max node *s*
- **b**_s: upper bound on value of min node s
- Prune a node if its interval doesn't have non-trivial overlap with every ancestor (store $\alpha_s = \max_{s' \leq s} a_{s'}$ and $\beta_s = \min_{s' \leq s} b_{s'}$)