
Course plan

Reflex

Search problems

Markov decision processes

Adversarial games

States

Constraint satisfaction problems

Bayesian networks

Variables Logic

”Low-level intelligence” ”High-level intelligence”

Machine learning

CS221 2

Reflex-based models

input x
f

predictor

y output

CS221 6

Binary classification

x
f

classifier

y 2 {+1,�1} label

Fraud detection: credit card transaction ! fraud or no fraud

Toxic comments: online comment ! toxic or not toxic

Higgs boson: measurements of event ! decay event or background

CS221 8

Regression

x f y 2 R response

Poverty mapping: satellite image ! asset wealth index

Housing: information about house ! price

Arrival times: destination, weather, time ! time of arrival

CS221 10

Structured prediction

x f y is a complex object

Machine translation: English sentence ! Japanese sentence

Dialogue: conversational history ! next utterance

Image captioning: image ! sentence describing image

Image segmentation: image ! segmentation

CS221 12

Linear regression framework

training data

example

example

example

x y

1 1

2 3

4 3

learning algorithm

3 input

f predictor

2.71 output 0 1 2 3 4 5

x

0

1

2

3

4

y

Design decisions:

Which predictors are possible? hypothesis class

How good is a predictor? loss function

How do we compute the best predictor? optimization algorithm

CS221 6

Summary

training data

x y

1 1

2 3

4 3

learning algorithm

3

f predictor

2.71 0 1 2 3 4 5

x

0

1

2

3

4

y

Which predictors are possible?

Hypothesis class

Linear functions

F = {fw(x) = w · �(x)},�(x) = [1, x]

How good is a predictor?

Loss function

Squared loss

Loss(x, y,w) = (fw(x)� y)2

How to compute best predictor?

Optimization algorithm

Gradient descent

w w � ⌘rTrainLoss(w)

CS221 22

Optimization algorithm: how to compute best?

Goal: minw TrainLoss(w)

Definition: gradient

The gradient rwTrainLoss(w) is the direction that increases the

training loss the most.

Algorithm: gradient descent

Initialize w = [0, . . . , 0]

For t = 1, . . . , T : epochs

w w � ⌘|{z}
step size

rwTrainLoss(w)| {z }
gradient

CS221 14

Computing the gradient

Objective function:

TrainLoss(w) =
1

|Dtrain|
X

(x,y)2Dtrain

(w · �(x)� y)2

Gradient (use chain rule):

rwTrainLoss(w) =
1

|Dtrain|
X

(x,y)2Dtrain

2(w · �(x)� y| {z }
prediction�target

)�(x)

CS221 16

Linear classification framework

training data

example

example

example

x1 x2 y

0 2 1

-2 0 1

1 -1 -1

learning algorithm

[2, 0] input

f classifier

-1 label

-3 -2 -1 0 1 2 3

x1

-3

-2

-1

0

1

2

3

x
2

decision boundary

Design decisions:

Which classifiers are possible? hypothesis class

How good is a classifier? loss function

How do we compute the best classifier? optimization algorithm

CS221 2

Hypothesis class: which classifiers?

�(x) = [x1, x2]

f(x) = sign([�0.6, 0.6] · �(x))

f(x) = sign([0.5, 1] · �(x))

-3 -2 -1 0 1 2 3

x1

-3

-2

-1

0

1

2

3

x
2

General binary classifier:

fw(x) = sign(w · �(x))

Hypothesis class:

F = {fw : w 2 R2}

CS221 6

Score and margin

Predicted label: fw(x) = sign(w · �(x))
Target label: y

-3 -2 -1 0 1 2 3

x1

-3

-2

-1

0

1

2

3

x
2

Definition: score

The score on an example (x, y) is w · �(x), how confident we are
in predicting +1.

Definition: margin

The margin on an example (x, y) is (w · �(x))y, how correct we
are.

CS221 [score,margin] 10

Hinge loss

-3 -2 -1 0 1 2 3

margin (w · �(x))y

0

1

2

3

4

L
o
s
s
(x
,y
,w

)

Loss0-1

Losshinge

Losshinge(x, y,w) = max{1� (w · �(x))y, 0}

CS221 16

Gradient of the hinge loss

-3 -2 -1 0 1 2 3

margin (w · �(x))y

0

1

2

3

4

L
os
s(
x
,y
,w

)

Losshinge

Losshinge(x, y,w) = max{1� (w · �(x))y, 0}

rLosshinge(x, y,w) =

(
��(x)y if {1� (w · �(x))y} > {0}
0 otherwise

CS221 20

Summary so far

w · �(x)| {z }
score

Regression Classification

Prediction fw(x) score sign(score)

Relate to target y residual (score� y) margin (score y)

Loss functions
squared

absolute deviation

zero-one

hinge

logistic

Algorithm gradient descent gradient descent

CS221 26

Stochastic gradient descent

TrainLoss(w) =
1

|Dtrain|
X

(x,y)2Dtrain

Loss(x, y,w)

Algorithm: stochastic gradient descent

Initialize w = [0, . . . , 0]

For t = 1, . . . , T :

For (x, y) 2 Dtrain:

w w � ⌘rwLoss(x, y,w)

CS221 4

Per-group loss

x y g

1 4 A

2 8 A

5 5 B

6 6 B

7 7 B

8 8 B
0 1 2

w

0

20

40

60

80

lo
ss

TrainLossA

TrainLossB

TrainLossg(w) =
1

|Dtrain(g)|
X

(x,y)2Dtrain(g)

Loss(x, y,w)

TrainLossA(1) =
1
2 ((1� 4)2 + (2� 8)2) = 22.5

TrainLossB(1) =
1
4 ((5� 5)2 + (6� 6)2 + (7� 7)2 + (8� 8)2) = 0

CS221 10

Summary

x y g

1 4 A

2 8 A

5 5 B

6 6 B

7 7 B

8 8 B
0 1 2

w

0

20

40

60

80

lo
s
s

TrainLoss

TrainLossmax

0 1 2 3 4 5 6 7 8

x

0

1

2

3

4

5

6

7

8

y

• Maximum group loss 6= average loss

• Group DRO: minimize the maximum group loss

• Many more nuances: intersectionality? don’t know groups? overfitting?

CS221 18

Quadratic predictors

�(x) = [1, x, x2]

Example: �(3) = [1, 3, 9]

f(x) = [2, 1,�0.2] · �(x)

f(x) = [4,�1, 0.1] · �(x)

f(x) = [1, 1, 0] · �(x)

F = {fw(x) = w · �(x) : w 2 R3}

0 1 2 3 4 5

x

0

1

2

3

4

y

Non-linear predictors just by changing �

CS221 6

Predictors with periodicity structure

�(x) = [1, x, x2, cos(3x)]

Example: �(2) = [1, 2, 4, 0.96]

f(x) = [1, 1,�0.1, 1] · �(x)

f(x) = [3,�1, 0.1, 0.5] · �(x)

F = {fw(x) = w · �(x) : w 2 R4}
0 1 2 3 4 5

x

0

1

2

3

4

y

Just throw in any features you want

CS221 10

Linear in what?

Prediction:

fw(x) = w · �(x)

Linear in w? Yes

Linear in �(x)? Yes

Linear in x? No!

Key idea: non-linearity

• Expressivity: score w · �(x) can be a non-linear function of x

• E�ciency: score w · �(x) always a linear function of w

CS221 12

Feature templates

Definition: feature template

A feature template is a group of features all computed in a similar way.

abc@gmail.com last three characters equals

endsWith aaa : 0

endsWith aab : 0

endsWith aac : 0

...

endsWith com : 1

...

endsWith zzz : 0

Define types of pattern to look for, not particular patterns

CS221 10

Non-linear predictors

Linear predictors:

fw(x) = w · �(x), �(x) = [1, x]
0 1 2 3 4 5

x

0

1

2

3

4

y

Non-linear (quadratic) predictors:

fw(x) = w · �(x), �(x) = [1, x, x2]

0 1 2 3 4 5

x

0

1

2

3

4

y

Non-linear neural networks:

fw(x) = w · �(V�(x)), �(x) = [1, x]
0 1 2 3 4 5

x

0

1

2

3

4

y

CS221 2

Two-layer neural networks

Intermediate subproblems:

h(x)

=�
�

V
�(x)

�

Predictor (classification):

fV,w(x) = sign
� w

·

h(x)
�

Interpret h(x) as a learned feature representation!

Hypothesis class:

F = {fV,w : V 2 Rk⇥d,w 2 Rk}

CS221 12

Avoid zero gradients

Problem: gradient of h1(x) with respect to v1 is 0

h1(x) = 1[v1 · �(x) � 0]

Solution: replace with an activation function � with non-zero gradients

-5 -3 0 3 5

z = v1 · �(x)

0

1

3

4

5

�
(z
) Threshold: 1[z � 0]

Logistic: 1
1+e�z

ReLU: max(z, 0)

h1(x) = �(v1 · �(x))
CS221 10

Summary

score =
w

· �(

V
�(x)

)

• Intuition: decompose problem into intermediate parallel subproblems

• Deep networks iterate this decomposition multiple times

• Hypothesis class contains predictors ranging over weights for all layers

• Next up: learning neural networks

CS221 20

Motivation: regression with four-layer neural networks

Loss on one example:

Loss(x, y,V1,V2,V3,w) = (w · �(V3�(V2�(V1�(x))))� y)2

Stochastic gradient descent:

V1 V1 � ⌘rV1Loss(x, y,V1,V2,V3,w)

V2 V2 � ⌘rV2Loss(x, y,V1,V2,V3,w)

V3 V3 � ⌘rV3Loss(x, y,V1,V2,V3,w)

w w � ⌘rwLoss(x, y,V1,V2,V3,w)

How to get the gradient without doing manual work?

CS221 2

Computation graphs

Loss(x, y,V1,V2,V3,w) = (w · �(V3�(V2�(V1�(x))))� y)2

Definition: computation graph

A directed acyclic graph whose root node represents the final mathematical expression
and each node represents intermediate subexpressions.

Upshot: compute gradients via general backpropagation algorithm

Purposes:

• Automatically compute gradients (how TensorFlow and PyTorch work)

• Gain insight into modular structure of gradient computations

CS221 4

Backpropagation

(·)2

�

·

w = [3, 1] �(x) = [1, 2]

�(x) = [1, 2]

y = 2

1

2(residual)

score = 5

residual = 3

loss = 9

[6, 12]

6

6

1
Loss(x, y,w) = (w · �(x)� y)2

w = [3, 1],�(x) = [1, 2], y = 2

backpropagation

rwLoss(x, y,w) = [6, 12]

Definition: Forward/backward values

Forward: fi is value for subexpression rooted at i

Backward: gi =
@loss
@fi

is how fi influences loss

Algorithm: backpropagation algorithm

Forward pass: compute each fi (from leaves to root)

Backward pass: compute each gi (from root to leaves)

CS221 16

Summary

Not the real objective: training loss

Real objective: loss on unseen future examples

Semi-real objective: test loss

Key idea: keep it simple

Try to minimize training error, but keep the hypothesis class small.

CS221 26

Approximation and estimation error

All predictors

f⇤

F

g

Learning

f̂

approx. error est. error

• Approximation error: how good is the hypothesis class?

• Estimation error: how good is the learned predictor relative to the potential of the
hypothesis class?

Err(f̂)� Err(f⇤) = Err(f̂)� Err(g)| {z }
estimation

+ Err(g)� Err(f⇤)| {z }
approximation

CS221 12

Controlling the norm

Regularized objective:

min
w

TrainLoss(w) +
�

2
kwk2

Algorithm: gradient descent

Initialize w = [0, . . . , 0]

For t = 1, . . . , T :

w w � ⌘(rwTrainLoss(w)+�w)

Same as gradient descent, except shrink the weights towards zero by �.

CS221 22

Hyperparameters

Definition: hyperparameters

Design decisions (hypothesis class, training objective, optimization algorithm) that

need to be made before running the learning algorithm.

How do we choose hyperparameters?

Choose hyperparameters to minimize Dtrain error?

No - optimum would be to include all features, no regularization, train forever

Choose hyperparameters to minimize Dtest error?

No - choosing based on Dtest makes it an unreliable estimate of error!

CS221 4

Validation set

Definition: validation set

A validation set is taken out of the training set and used to optimize hyperparameters.

Dtrain\Dval Dval Dtest

For each setting of hyperparameters, train on Dtrain\Dval, evaluate on Dval

CS221 6

Summary

Clustering: discover structure in unlabeled data

K-means objective:

-3 -2 -1 0 1 2 3

�(x)1

-3

-2

-1

0

1

2

3

�
(x
) 2

K-means algorithm:

assignments z centroids µ

Unsupervised learning use cases:

• Data exploration and discovery

• Providing representations to downstream supervised learning

CS221 22

K-means algorithm

Algorithm: K-means

Initialize µ = [µ1, . . . , µK] randomly.

For t = 1, . . . , T :

Step 1: set assignments z given µ

For each point i = 1, . . . , n:

zi arg min
k=1,...,K

k�(xi)� µkk2

Step 2: set centroids µ given z

For each cluster k = 1, . . . ,K:

µk
1

|{i : zi = k}|
X

i:zi=k

�(xi)

CS221 18

Course plan

Reflex

Search problems

Markov decision processes

Adversarial games

States

Constraint satisfaction problems

Bayesian networks

Variables Logic

”Low-level intelligence” ”High-level intelligence”

Machine learning

CS221 2

Beyond reflex

Classifier (reflex-based models):

x f single action y 2 {�1,+1}

Search problem (state-based models):

x f action sequence (a1, a2, a3, a4, . . .)

Key: need to consider future consequences of an action!

CS221 16

Search problem

FCGWk

GWkFC CWkFG

FCWkG

WkFCG

FWkCG FGWkC

GkFCW

FGkCW

kFCGW

FG.:1

F/:1

FW.:1

F/:1 FG/:1

CkFGW

FCkGW FCGkW

GkFCW

FGkCW

kFCGW

FG.:1

F/:1

FC.:1

F/:1 FG/:1

FC.:1 FW.:1

F/:1

CGkFW

FC.:1 FG.:1 FW.:1

Definition: search problem

• sstart: starting state

• Actions(s): possible actions

• Cost(s, a): action cost

• Succ(s, a): successor

• IsEnd(s): reached end state?

CS221 6

Dynamic Programming Review

state s

state s0

end state

FutureCost(s0)

Cost(s, a)

FutureCost(s) =

(
0 if IsEnd(s)

mina2Actions(s)[Cost(s, a) + FutureCost(Succ(s, a))] otherwise

Key idea: state

A state is a summary of all the past actions su�cient to choose future actions opti-
mally.

CS221 22

Dynamic programming

Algorithm: dynamic programming

def DynamicProgramming(s):

If already computed for s, return cached answer.

If IsEnd(s): return solution

For each action a 2 Actions(s): ...

[semi-live solution: Dynamic Programming]

Assumption: acyclicity

The state graph defined by Actions(s) and Succ(s, a) is acyclic.

CS221 8

Ordering the states

Observation: prefixes of optimal path are optimal

sstart s s0

PastCost(s) Cost(s, a)

Key: if graph is acyclic, dynamic programming makes sure we compute PastCost(s) before

PastCost(s0)

If graph is cyclic, then we need another mechanism to order states...

CS221 2

Uniform cost search (UCS)

Key idea: state ordering

UCS enumerates states in order of increasing past cost.

Assumption: non-negativity

All action costs are non-negative: Cost(s, a) � 0.

UCS in action:

CS221 4

High-level strategy

Frontier

Explored

Unexplored

• Explored: states we’ve found the optimal path to

• Frontier: states we’ve seen, still figuring out how to get there cheaply

• Unexplored: states we haven’t seen

CS221 6

Uniform cost search (UCS)

Algorithm: uniform cost search [Dijkstra, 1956]

Add sstart to frontier (priority queue)

Repeat until frontier is empty:

Remove s with smallest priority p from frontier

If IsEnd(s): return solution

Add s to explored

For each action a 2 Actions(s):

Get successor s0 Succ(s, a)

If s0 already in explored: continue

Update frontier with s0 and priority p+ Cost(s, a)

[semi-live solution: Uniform Cost Search]

CS221 4

Can uniform cost search be improved?

sstart sendWasted e↵ort?

Problem: UCS orders states by cost from sstart to s

Goal: take into account cost from s to send

CS221 4

Exploring states

UCS: explore states in order of PastCost(s)

sstart s send

PastCost(s) FutureCost(s)

Ideal: explore in order of PastCost(s) + FutureCost(s)

A*: explore in order of PastCost(s) + h(s)

Definition: Heuristic function

A heuristic h(s) is any estimate of FutureCost(s).

CS221 6

A* search

Algorithm: A* search [Hart/Nilsson/Raphael, 1968]

Run uniform cost search with modified edge costs:

Cost0(s, a) = Cost(s, a) + h(Succ(s, a))� h(s)

Intuition: add a penalty for how much action a takes us away from the end state

Example:

A B C D E

sstart send

4 3 2 1 0h(s) =

2 2 0 0

Cost0(C,B) = Cost(C,B) + h(B)� h(C) = 1 + (3� 2) = 2

CS221 8

Consistent heuristics

Definition: consistency

A heuristic h is consistent if

• Cost0(s, a) = Cost(s, a) + h(Succ(s, a))� h(s) � 0

• h(send) = 0.

Condition 1: needed for UCS to work (triangle inequality).

s

send

Cost(s, a)

h(s)

h(Succ(s, a))

Condition 2: FutureCost(send) = 0 so match it.

CS221 12

Correctness of A*

Proposition: correctness

If h is consistent, A* returns the minimum cost path.

CS221 14

E�ciency of A*

Theorem: e�ciency of A*

A* explores all states s satisfying

PastCost(s)  PastCost(send)� h(s)

Interpretation: the larger h(s), the better

Proof: A* explores all s such that

PastCost(s) + h(s)


PastCost(send)

CS221 18

A* search

Key idea: distortion

A* distorts edge costs to favor end states.

CS221 22

Admissibility

Definition: admissibility

A heuristic h(s) is admissible if

h(s)  FutureCost(s)

Intuition: admissible heuristics are optimistic

Theorem: consistency implies admissibility

If a heuristic h(s) is consistent, then h(s) is admissible.

Proof: use induction on FutureCost(s)

CS221 24

Relaxation

Intuition: ideally, use h(s) = FutureCost(s), but that’s as hard as solving the original problem.

Key idea: relaxation

Constraints make life hard. Get rid of them.

But this is just for the heuristic!

CS221 4

General framework

Definition: relaxed search problem

A relaxation Prel of a search problem P has costs that satisfy:

Costrel(s, a)  Cost(s, a).

Definition: relaxed heuristic

Given a relaxed search problem Prel, define the relaxed heuristic h(s) =
FutureCostrel(s), the minimum cost from s to an end state using Costrel(s, a).

CS221 20

Max of two heuristics

How do we combine two heuristics?

Proposition: max heuristic

Suppose h1(s) and h2(s) are consistent.

Then h(s) = max{h1(s), h2(s)} is consistent.

Proof: exercise

CS221 26

Course plan

Reflex

Search problems

Markov decision processes

Adversarial games

States

Constraint satisfaction problems

Bayesian networks

Variables Logic

”Low-level intelligence” ”High-level intelligence”

Machine learning

CS221 4

Uncertainty in the real world

state s, action a random

state s01

state s02

CS221 8

Markov decision process

Definition: Markov decision process

States: the set of states

sstart 2 States: starting state

Actions(s): possible actions from state s

T (s, a, s0): probability of s0 if take action a in state s

Reward(s, a, s0): reward for the transition (s, a, s0)

IsEnd(s): whether at end of game

0  �  1: discount factor (default: 1)

CS221 10

What is a solution?

Search problem: path (sequence of actions)

MDP:

Definition: policy

A policy ⇡ is a mapping from each state s 2 States to an action a 2 Actions(s).

Example: volcano crossing

s ⇡(s)

(1,1) S

(2,1) E

(3,1) N

... ...

CS221 20

Evaluating a policy

Definition: utility

Following a policy yields a random path.

The utility of a policy is the (discounted) sum of the rewards on the path (this is a
random variable).

Path Utility

[in; stay, 4, end] 4

[in; stay, 4, in; stay, 4, in; stay, 4, end] 12

[in; stay, 4, in; stay, 4, end] 8

[in; stay, 4, in; stay, 4, in; stay, 4, in; stay, 4, end] 16

... ...

Definition: value (expected utility)

The value of a policy at a state is the expected utility.

Value: 12CS221 2

Discounting

Definition: utility

Path: s0, a1r1s1, a2r2s2, . . . (action, reward, new state).

The utility with discount � is

u1 = r1 + �r2 + �2r3 + �3r4 + · · ·

Discount � = 1 (save for the future):

[stay, stay, stay, stay]: 4 + 4 + 4 + 4 = 16

Discount � = 0 (live in the moment):

[stay, stay, stay, stay]: 4 + 0 · (4 + · · ·) = 4

Discount � = 0.5 (balanced life):

[stay, stay, stay, stay]: 4 + 1
2 · 4 + 1

4 · 4 + 1
8 · 4 = 7.5

CS221 6

Policy evaluation

Definition: value of a policy

Let V⇡(s) be the expected utility received by following policy ⇡ from state s.

Definition: Q-value of a policy

Let Q⇡(s, a) be the expected utility of taking action a from state s, and then following
policy ⇡.

⇡(s)
T (s,⇡(s), s0)

s0

s,⇡(s)sV⇡(s)

V⇡(s0)
Q⇡(s,⇡(s))

CS221 8

Policy evaluation

Plan: define recurrences relating value and Q-value

⇡(s)
T (s,⇡(s), s0)

s0

s,⇡(s)sV⇡(s)

V⇡(s0)
Q⇡(s,⇡(s))

V⇡(s) =

(
0 if IsEnd(s)

Q⇡(s,⇡(s)) otherwise.

Q⇡(s, a) =
X

s0

T (s0|s, a)[Reward(s, a, s0) + �V⇡(s
0)]

CS221 10

Policy evaluation

Key idea: iterative algorithm

Start with arbitrary policy values and repeatedly apply recurrences to converge to true
values.

Algorithm: policy evaluation

Initialize V (0)
⇡ (s) 0 for all states s.

For iteration t = 1, . . . , tPE:

For each state s:
V (t)
⇡ (s)

X

s0

T (s0|s,⇡(s))[Reward(s,⇡(s), s0) + �V (t�1)
⇡ (s0)]

| {z }
Q(t�1)(s,⇡(s))

CS221 14

Optimal value and policy

Goal: try to get directly at maximum expected utility

Definition: optimal value

The optimal value Vopt(s) is the maximum value attained by any policy.

CS221 2

Optimal values and Q-values

a
T (s0|s, a)

s

s, a s0

Vopt(s)

Vopt(s0)

Qopt(s, a)

Optimal value if take action a in state s:

Qopt(s, a) =
X

s0

T (s, a, s0)[Reward(s, a, s0) + �Vopt(s
0)].

Optimal value from state s:

Vopt(s) =

(
0 if IsEnd(s)

maxa2Actions(s)Qopt(s, a) otherwise.

CS221 4

Optimal policies

a
T (s0|s, a)

s

s, a s0

Vopt(s)

Vopt(s0)

Qopt(s, a)

Given Qopt, read o↵ the optimal policy:

⇡opt(s) = arg max
a2Actions(s)

Qopt(s, a)

CS221 6

Value iteration

Algorithm: value iteration [Bellman, 1957]

Initialize V
(0)
opt (s) 0 for all states s.

For iteration t = 1, . . . , tVI:

For each state s:
V

(t)
opt (s) max

a2Actions(s)

X

s0

T (s, a, s0)[Reward(s, a, s0) + �V
(t�1)
opt (s0)]

| {z }
Q(t�1)

opt (s,a)

Time: O(tVISAS0)

[semi-live solution]

CS221 8

Convergence

Theorem: convergence

Suppose either

• discount � < 1, or

• MDP graph is acyclic.

Then value iteration converges to the correct answer.

Example: non-convergence

discount � = 1, zero rewards

CS221 14

Unknown transitions and rewards

Definition: Markov decision process

States: the set of states

sstart 2 States: starting state

Actions(s): possible actions from state s

IsEnd(s): whether at end of game

0  �  1: discount factor (default: 1)

reinforcement learning!

CS221 2

From MDPs to reinforcement learning

Markov decision process (o✏ine)

• Have mental model of how the world

works.

• Find policy to collect maximum rewards.

Reinforcement learning (online)

• Don’t know how the world works.

• Perform actions in the world to find out

and collect rewards.

CS221 6

Reinforcement learning framework

agent environment

action a

reward r, new state s0

Algorithm: reinforcement learning template

For t = 1, 2, 3, . . .

Choose action at = ⇡act(st�1) (how?)

Receive reward rt and observe new state st
Update parameters (how?)

CS221 8

Model-Based Value Iteration

Data: s0; a1, r1, s1; a2, r2, s2; a3, r3, s3; . . . ; an, rn, sn

Key idea: model-based learning

Estimate the MDP: T (s, a, s0) and Reward(s, a, s0)

Transitions:

T̂ (s, a, s0) = # times (s, a, s0) occurs
times (s, a) occurs

Rewards:

\Reward(s, a, s0) = r in (s, a, r, s0)

CS221 2

Problem

in in,stay

in,quit end

stay
(4/7): $4

(3/7): $4quit

?: $?

Problem: won’t even see (s, a) if a 6= ⇡(s) (a = quit)

Key idea: exploration

To do reinforcement learning, need to explore the state space.

Solution: need ⇡ to explore explicitly (more on this later)

CS221 6

From model-based to model-free

Q̂opt(s, a) =
X

s0

T̂ (s, a, s0)[\Reward(s, a, s0) + �V̂opt(s
0)]

All that matters for prediction is (estimate of) Qopt(s, a).

Key idea: model-free learning

Try to estimate Qopt(s, a) directly.

CS221 8

Model-free Monte Carlo

Data (following policy ⇡):

s0; a1, r1, s1; a2, r2, s2; a3, r3, s3; . . . ; an, rn, sn

Recall:

Q⇡(s, a) is expected utility starting at s, first taking action a, and then following policy ⇡

Utility:

ut = rt + � · rt+1 + �2 · rt+2 + · · ·

Estimate:

Q̂⇡(s, a) = average of ut where st�1 = s, at = a

(and s, a doesn’t occur in s0, · · · , st�2)

CS221 4

Model-free Monte Carlo

in in,stay

in,quit end

stay

(?): $?

(?): $?quit

?: $?

(4 + 8 + 16)/3

?

Data (following policy ⇡(s) = stay):

[in; stay, 4, in; stay, 4, in; stay, 4, in; stay, 4, end]

Note: we are estimating Q⇡ now, not Qopt

Definition: on-policy versus o↵-policy

On-policy: estimate the value of data-generating policy

O↵-policy: estimate the value of another policy

CS221 6

Q-learning

Bellman optimality equation:

Qopt(s, a) =
X

s0

T (s, a, s0)[Reward(s, a, s0) + �Vopt(s
0)]

Algorithm: Q-learning [Watkins/Dayan, 1992]

On each (s, a, r, s0):
Q̂opt(s, a) (1� ⌘)Q̂opt(s, a)| {z }

prediction

+ ⌘(r + �V̂opt(s
0))

| {z }
target

Recall: V̂opt(s
0) = max

a02Actions(s0)
Q̂opt(s

0, a0)

CS221 4

Exploration/exploitation tradeo↵

Key idea: balance

Need to balance exploration and exploitation.

Examples from life: restaurants, routes, research

CS221 8

Epsilon-greedy

Algorithm: epsilon-greedy policy

⇡act(s) =

(
argmaxa2Actions Q̂opt(s, a) probability 1� ✏,

random from Actions(s) probability ✏.

Run (or press ctrl-enter)
100

100

100100

100

100

-5099.8 -50 100

100

2

100100

100

100

-50100 -50
100

100

100-50

2
100

100

1002

-50

100

100100

100

100

100100

Average (lifetime) utility: 31.75

a r s

(2,1)

E 0 (2,2)

S 0 (3,2)

E 0 (3,3)

E 0 (3,4)

N 0 (2,4)

N 100 (1,4)

CS221 10

Function approximation

Key idea: linear regression model

Define features �(s, a) and weights w:

Q̂opt(s, a;w) = w · �(s, a)

Example: features for volcano crossing

�1(s, a) = 1[a = W]

�2(s, a) = 1[a = E]

...

�7(s, a) = 1[s = (5, ⇤)]
�8(s, a) = 1[s = (⇤, 6)]
...

CS221 6

Function approximation

Algorithm: Q-learning with function approximation

On each (s, a, r, s0):

w w � ⌘[Q̂opt(s, a;w)
| {z }

prediction

� (r + �V̂opt(s
0))

| {z }
target

]�(s, a)

Implied objective function:

(Q̂opt(s, a;w)
| {z }

prediction

� (r + �V̂opt(s
0))

| {z }
target

)2

CS221 8

Course plan

Reflex

Search problems

Markov decision processes

Adversarial games

States

Constraint satisfaction problems

Bayesian networks

Variables Logic

”Low-level intelligence” ”High-level intelligence”

Machine learning

CS221 2

Game tree

Key idea: game tree

Each node is a decision point for a player.

Each root-to-leaf path is a possible outcome of the game.

-50 50 1 3 -5 15

CS221 2

Two-player zero-sum games

Players = {agent, opp}

Definition: two-player zero-sum game

sstart: starting state

Actions(s): possible actions from state s

Succ(s, a): resulting state if choose action a in state s

IsEnd(s): whether s is an end state (game over)

Utility(s): agent’s utility for end state s

Player(s) 2 Players: player who controls state s

CS221 4

Game evaluation recurrence

Analogy: recurrence for policy evaluation in MDPs

⇡agent ⇡opp ⇡agent ...

Value of the game:

Veval(s) = { Utility(s) IsEnd(s)
P

a2Actions(s) ⇡agent(s, a)Veval(Succ(s, a)) Player(s) = agent
P

a2Actions(s) ⇡opp(s, a)Veval(Succ(s, a)) Player(s) = opp

CS221 6

Expectimax recurrence

Analogy: recurrence for value iteration in MDPs

⇡agent ⇡opp ⇡agent ...

Vexptmax(s) =

8
><

>:

Utility(s) IsEnd(s)

maxa2Actions(s)Vexptmax(Succ(s, a)) Player(s) = agent
P

a2Actions(s) ⇡opp(s, a)Vexptmax(Succ(s, a)) Player(s) = opp

CS221 4

Expectimax example

Example: expectimax

⇡opp(s, a) =
1
2 for a 2 Actions(s)

-50 50

(0.5) (0.5)

0

1 3

(0.5) (0.5)

2

-5 15

(0.5) (0.5)

5

5

Vexptmax(sstart) = 5

CS221 2

Minimax recurrence

No analogy in MDPs:

⇡agent ⇡opp ⇡agent ...

Vminmax(s) =

8
><

>:

Utility(s) IsEnd(s)

maxa2Actions(s)Vminmax(Succ(s, a)) Player(s) = agent

mina2Actions(s)Vminmax(Succ(s, a)) Player(s) = opp

CS221 6

Minimax example

Example: minimax

-50 50

-50

1 3

1

-5 15

-5

1

Vminmax(sstart) = 1

CS221 4

Relationship between game values

-50 50 1 3 -5 15

⇡min ⇡7

⇡max
V (⇡max,⇡min)

1


V (⇡max,⇡7)

2� 

⇡exptmax(7)
V (⇡exptmax(7),⇡min)

-5

V (⇡exptmax(7),⇡7)

5

CS221 20

Expectiminimax recurrence

Players = {agent, opp, coin}

⇡agent ⇡coin ⇡opp ...

Vexptminmax(s) =

8
>>><

>>>:

Utility(s) IsEnd(s)

maxa2Actions(s)Vexptminmax(Succ(s, a)) Player(s) = agent

mina2Actions(s)Vexptminmax(Succ(s, a)) Player(s) = opp
P

a2Actions(s) ⇡coin(s, a)Vexptminmax(Succ(s, a)) Player(s) = coin

CS221 6

Expectiminimax example

Example: expectiminimax

⇡coin(s, a) =
1
2 for a 2 {0, 1}

-50 50

-50

-5 15

-5

(0.5) (0.5)

-27.5

1 3

1

-50 50

-50

(0.5) (0.5)

-24.5

-5 15

-5

1 3

1

(0.5) (0.5)

-2

-2

Vexptminmax(sstart) = �2

CS221 4

Speeding up minimax

• Evaluation functions: use domain-specific knowledge, compute approximate answer

• Alpha-beta pruning: general-purpose, compute exact answer

CS221 4

Depth-limited search

Limited depth tree search (stop at maximum depth dmax):

Vminmax(s, d) =

8
>>><

>>>:

Utility(s) IsEnd(s)

Eval(s) d = 0

maxa2Actions(s) Vminmax(Succ(s, a), d) Player(s) = agent

mina2Actions(s) Vminmax(Succ(s, a), d� 1) Player(s) = opp

Use: at state s, call Vminmax(s, dmax)

Convention: decrement depth at last player’s turn

CS221 6

Evaluation functions

Definition: Evaluation function

An evaluation function Eval(s) is a (possibly very weak) estimate of the value
Vminmax(s).

Analogy: FutureCost(s) in search problems

CS221 8

Pruning principle

Choose A or B with maximum value:

A: [3, 5] B: [5, 100]

Key idea: branch and bound

Maintain lower and upper bounds on values.

If intervals don’t overlap non-trivially, then can choose optimally without further work.

CS221 2

Alpha-beta pruning

Key idea: optimal path

The optimal path is path that minimax policies take.

Values of all nodes on path are the same.

...

...

...

• as: lower bound on value of max
node s

• bs: upper bound on value of min
node s

• Prune a node if its interval
doesn’t have non-trivial over-
lap with every ancestor (store
↵s = maxs0�s as0 and �s =
mins0�s bs0)

� 6

 8

� 3

 5
CS221 6

