
Bayesian networks: EM algorithm

• In this module, I’ll introduce the EM algorithm for learning Bayesian networks when we have unobserved variables in our training data.

Motivation

G

R1 R2

Genre G ∈ {drama, comedy}
Jim’s rating R1 ∈ {1, 2, 3, 4, 5}
Martha’s rating R2 ∈ {1, 2, 3, 4, 5}

If observe all the variables: maximum likelihood = count and normalize

Dtrain = {(d, 4, 5), (d, 4, 4), (d, 5, 3), (c, 1, 2), (c, 5, 4)}

What if we don’t observe some of the variables?

Dtrain = {(?, 4, 5), (?, 4, 4), (?, 5, 3), (?, 1, 2), (?, 5, 4)}

CS221 2

• Let’s start with our familiar movie rating example, where we have genre G, Jim’s rating R1, and Martha’s rating R2.

• If we observe all the variables in each training example, then we saw how we can do maximum likelihood estimation (a.k.a. count + normalize).

• Data collection is hard, and often we don’t observe the value of every single variable. Maybe we only see the ratings (R1, R2), but not the
genre G. Can we learn in this setting, which is clearly more difficult?

• Intuitively, it might seem hopeless. After all, how can we ever learn anything about the relationship between G and R1 if we never observe
G at all?

• The magic of EM (or unsupervised learning in general) is that you can in many (but certainly not all) cases.

Maximum marginal likelihood

Variables: H is hidden, E = e is observed

Example:

G

R1 R2

H = G E = (R1, R2) e = (1, 2)

θ = (pG, pR)

Maximum marginal likelihood objective:

max
θ

∏
e∈Dtrain

P(E = e; θ)

= max
θ

∏
e∈Dtrain

∑
h

P(H = h,E = e; θ)

CS221 4

• Let’s try to solve this problem top-down — what do we want, mathematically?

• Formally we have a set of hidden variables H, observed variables E, and parameters θ, which define all the local conditional distributions.
We observe E = e, but we don’t know H or θ.

• If there were no hidden variables, then we would just use maximum likelihood: maxθ
∏

(h,e)∈Dtrain
P(H = h,E = e; θ). But since H is

unobserved, we can simply replace the joint probability P(H = h,E = e; θ) with the marginal probability P(E = e; θ), which is just a sum
over values h that the hidden variables H could take on.

Expectation Maximization (EM)

Intuition: generalization of the K-means algorithm

cluster centroids = parameters θ cluster assignments = hidden variables H

Variables: H is hidden, E = e is observed

Algorithm: Expectation Maximization (EM)

Initialize θ randomly

Repeat until convergence:

E-step:

Compute q(h) = P(H = h | E = e; θ) for each h (probabilistic inference)

Create fully-observed weighted examples: (h, e) with weight q(h)

M-step:

Maximum likelihood (count and normalize) on weighted examples to get θ

CS221 6

• Expectation Maximization (EM), which was developed in statistics in the 1970s, is an algorithm that attempts to maximize the marginal
likelihood, although special cases had been developed earlier (e.g., for HMMs).

• To get intuition for EM, consider K-means, which turns out to be a special case of EM (for Gaussian mixture models with variance tending to
0). In K-means, we had to somehow estimate the cluster centers, but we didn’t know which points were assigned to which clusters. And in
that setting, we took an alternating optimization approach: find the best cluster assignment given the current cluster centers, find the best
cluster centers given the assignments, etc.
• The EM algorithm works analogously. EM consists of alternating between two steps, the E-step and the M-step. In the E-step, we don’t know

what the hidden variables are, so we compute the posterior distribution over them given our current parameters (P(H | E = e; θ)). This can
be done using any probabilistic inference algorithm. If H takes on a few values, then we can enumerate over all of them. If P(H,E) is defined
by an HMM, we can use the forward-backward algorithm. These posterior distributions provide a weight q(h) (which is a temporary variable
in the EM algorithm) to every value h that H could take on. Conceptually, the E-step then generates a set of weighted full assignments (h, e)
with weight q(h). (In implementation, we don’t need to create the data points explicitly, since we can just add counts directly.)

• In the M-step, we take in our set of full assignments (h, e) with weights, and we just do maximum likelihood estimation, which can be done
in closed form — just counting and normalizing (perhaps with smoothing if you want)!
• If we repeat the E-step and the M-step over and over again, we are guaranteed to converge to a local optima. Just like the K-means

algorithm, we might need to run the algorithm from different random initializations of θ and take the best one.

Example: one iteration of EM

G

R1 R2

Dtrain = {(?, 2, 2), (?, 1, 2)}

θ:

g pG(g)

c 0.5

d 0.5

g r pR(r | g)
c 1 0.4

c 2 0.6

d 1 0.6

d 2 0.4

(r1, r2) g P(G = g,R1 = r1, R2 = r2) q(g)

(2, 2) c 0.5 · 0.6 · 0.6 = 0.18 0.18
0.18+0.08 = 0.69

(2, 2) d 0.5 · 0.4 · 0.4 = 0.08 0.08
0.18+0.08 = 0.31

(1, 2) c 0.5 · 0.4 · 0.6 = 0.12 0.12
0.12+0.12 = 0.5

(1, 2) d 0.5 · 0.6 · 0.4 = 0.12 0.12
0.12+0.12 = 0.5

θ:

g count pG(g)

c 0.69 + 0.5 0.59

d 0.31 + 0.5 0.41

g r count pR(r | g)
c 1 0.5 0.21

c 2 0.5 + 0.69 + 0.69 0.79

d 1 0.5 0.31

d 2 0.5 + 0.31 + 0.31 0.69

E-step

M-step

CS221 8

• In the E-step, we are presented with the current set of parameters θ. We go through all the examples (in this case (2, 2) and (1, 2)). For each
example (r1, r2), we will consider all possible values of g (c or d), and compute the posterior distribution q(g) = P(G = g | R1 = r1, R2 = r2).

• The easiest way to do this is to write down the joint probability P(G = g,R1 = r1, R2 = r2) because this is just simply a product of the
parameters. For example, the first line is the product of pG(c) = 0.5, pR(2 | c) = 0.6 for r1 = 2, and pR(2 | c) = 0.6 for r2 = 2. For each
example (r1, r2), we normalize these joint probability to get q(g).

• Now each row consists of a fictitious data point with g filled in, but appropriately weighted according to the corresponding q(g), which is
based on what we currently believe about g.
• In the M-step, for each of the parameters (e.g., pG(c)), we simply add up the weighted number of times that parameter was used in the data

(e.g., 0.69 for (c, 2, 2) and 0.5 for (c, 1, 2)). Then we normalize these counts to get probabilities.

• If we compare the old parameters and new parameters after one round of EM, you’ll notice that parameters tend to sharpen (though not
always): probabilities tend to move towards 0 or 1.

Application: decipherment

Copiale cipher (105-page encrypted volume from 1730s):

Cracked in 2011 with the help of EM!

CS221 10

• Let’s now look at an interesting application of EM (or Bayesian networks in general): decipherment. Given a ciphertext (a string), how can
we decipher it?

• The Copiale cipher was deciphered in 2011 (it turned out to be the handbook of a German secret society), largely with the help of Kevin
Knight, an NLP researcher.

• Real ciphers are a bit too complex, so we will focus on the simple case of substitution ciphers.

Substitution ciphers

Letter substitution table (unknown):

Plain: abcdefghijklmnopqrstuvwxyz

Cipher: plokmijnuhbygvtfcrdxeszaqw

Plaintext (unknown): hello world

Ciphertext (known): nmyyt ztryk

Challenge: Give ciphertext, recover the plaintext

CS221 12

• The input to decipherment is a ciphertext. Let’s put our modeling hats on and think about how this ciphertext came to be.

• In a simple substitution cipher, someone comes up with a permutation of the letters (e.g., ”a” maps to ”p”). You can think about these as
the unknown parameters of the model.

• Then they think of something to say — the plaintext (e.g., ”hello world”). Finally, they apply the substitution table to generate the ciphertext
(deterministically).

Application: decipherment as an HMM

Variables:

• H1, . . . ,Hn (e.g., characters of plaintext)

• E1, . . . , En (e.g., characters of ciphertext)

H1 H2 H3 H4 H5

E1 E2 E3 E4 E5

P(H = h,E = e) = pstart(h1)
n∏

i=2

ptrans(hi | hi−1)
n∏

i=1

pemit(ei | hi)

Parameters: θ = (pstart, ptrans, pemit)

CS221 14

• We can formalize this process as an HMM as follows. The hidden variables are the plaintext and the observations are the ciphertext. Each
character of the plaintext is related to the corresponding character in the ciphertext based on the cipher, and the transitions encode the fact
that the characters in English are highly dependent on each other. For simplicity, we use a character-level bigram model (though n-gram
models would yield better results).

Application: decipherment as an HMM

H1 H2 H3 H4 H5

E1 E2 E3 E4 E5

Strategy:

• pstart: set to uniform

• ptrans: estimate on tons of English text

• pemit: substitution table, estimated from EM

Intuitions:

• ptrans to favor plaintexts h that look like English

• pemit favors consistent characters substitutions

CS221 16

• We need to specify how we estimate the starting probabilities pstart the transition probabilities ptrans, and the emission probabilities pemit.

• The starting probabilities we won’t care about so much and just set to a uniform distribution.

• The transition probabilities specify how someone might have generated the plaintext. We can estimate ptrans on a large corpora of English
text. Note we need not use the same data to estimate all the parameters of the model. Indeed, there is generally much more English plaintext
lying around than ciphertext. This is one of the other nice things about Bayesian networks, is that estimation can sometimes be done in a
modular way.
• The emission probabilities encode the substitution table. Here, we know that the substitution table is deterministic, but we let the parameters

be general distributions, which can certainly encode deterministic functions (e.g., pemit(p | a) = 1). We use EM to only estimate the emission
probabilities.
• We emphasize that the principal difficulty here is that we neither know the plaintext nor the parameters! But why might this work? The

intuition is that the transitions ptrans (which are known, so it’s a bit easier than standard EM) will favor plaintexts h that look like English
(e.g., hi−1 = t to hi = a rather than to hi = b). The emissions pemit will favor character substitutions that are consistent (so all occurrences
of a should be mapped to the same character).

Application: decipherment as an HMM

H1 H2 H3 H4 H5

E1 E2 E3 E4 E5

E-step: forward-backward computes for each position i and character h

qi(h)
def
= P(Hi = h | E1 = e1, . . . En = en)

M-step: count (fractional) and normalize for all characters e, h

countemit(h, e) =
∑

i:ei=e qi(h)

pemit(e | h) ∝ countemit(h, e)

CS221 18

• Let’s focus on the EM algorithm for estimating the emission probabilities. In the E-step, we can use the forward-backward algorithm to

compute the posterior distribution over hidden assignments P(H | E = e). More precisely, the algorithm returns qi(h)
def
= P(Hi = h | E = e)

for each position i = 1, . . . , n and possible hidden state h.
• We can use qi(h) as fractional counts of each Hi. To compute the counts countemit(h, e), we loop over all the positions algorithm i where
Ei = e and add the fractional count qi(h).

Decipherment in Python

[code]

CS221 20

• In the code, we first estimate the Markov model ptrans on some plain text. Then we run EM to estimate the pemit, where we leave pstart and
ptrans alone.

• As you can see from the demo, the result isn’t perfect, but not bad given the difficulty of the problem and the simplicity of the approach.

Summary

H1 H2 H3 H4 H5

E1 E2 E3 E4 E5

Maximum marginal likelihood:
max
θ

∏
e∈Dtrain

P(E = e; θ)

EM algorithm:

hidden variables q(h)

⇐ probabilistic inference (E-step)

count and normalize (M-step) ⇒

parameters θ

Applications: decipherment, phylogenetic reconstruction, crowdsourcing

CS221 22

• In summary, we introduced the EM algorithm for estimating the parameters of a Bayesian network when there are unobserved variables.

• The principle we follow is maximum marginal likelihood. The algorithm that optimizes this is the EM algorithm, which is very intuitive.
Ultimately, like in k-means, we have a chicken-and-egg problem, where we don’t know the hidden variables and we also don’t know the
parameters.

• But we can update each conditioned on the other: In the E-step, we use probabilistic inference to compute a distribution over hidden variables
conditioned on the evidence. In the M-step, we have a weighted set of fully-observable examples, and we simply count and normalize. This
procedure is guaranteed to converge to a local optimum of the marginal likelihood objective.

• Finally, after you have learned the parameters of your Bayesian network, you can go off and perform inference to answer all sorts of questions,
which could be on the unobserved variables on new test examples or completely other variables. This highlights the flexibility of Bayesian
networks in dealing with heterogenous data between training and test time.

• There are many applications of the EM algorithm. We looked at a simple form of decipherment, where we try to infer the plaintext form the
ciphertext. EM can also be used to reconstruct the phylogenetic tree given the DNA of modern organisms. It can also be used to infer the
unknown label of a data point, where the observations are the possibly noisy labels provided by crowdworkers.

• EM is the most canonical version of a broader class of variational inference approaches, which include things like variational autoencoders
(VAEs), where the q distribution (encoder) is given by a neural network, and the Bayesian network is the decoder. I’d encourage you to go
explore this connection in more detail.

