
Bayesian networks: forward-backward

• In this module, I will introduce the forward-backward algorithm for performing efficient and exact inference in Hidden Markov models, an
important special case of Bayesian networks.

Hidden Markov models for object tracking

0 1 2 3 4

time i

0

1

2

3

p
os
it
io
n
H

i

H1 H2 H3

E1 E2 E3

start transition emission

1/3

1/3

1/3

H1

Hi−1

1/4

1/2

1/4

Hi

Hi

1/4

1/2

1/4

Ei

h1 p(h1)

0 1/3

1 1/3

2 1/3

hi p(hi | hi−1)

hi−1 − 1 1/4

hi−1 1/2

hi−1 + 1 1/4

ei p(ei | hi)

hi − 1 1/4

hi 1/2

hi + 1 1/4

P(H = h,E = e) = p(h1)︸ ︷︷ ︸
start

n∏
i=2

p(hi | hi−1)︸ ︷︷ ︸
transition

n∏
i=1

p(ei | hi)︸ ︷︷ ︸
emission

CS221 2

• Let us revisit our object tracking example, now through the lens of HMMs. Recall that each time i, an object is at a location Hi, and what
we observe is a noisy observation Ei. The goal is to infer where the object is / was.

• We define a probabilistic story as follows: An object starts at H1 uniformly drawn over all possible locations.

• Then at each subsequent time step, the object transitions from the previous time step, keeping the same location with 1/2 probability, and
moves to an adjacent location each with 1/4 probability. For example, if p(h3 = 3 | h2 = 3) = 1/2 and p(h3 = 2 | h2 = 3) = 1/4.

• At each time step, we also emit a sensor reading Ei given the actual location Hi, following the same process as transitions (1/2 probability
of the same location, 1/4 probability of an adjacent location).
• Recall that finally, we define a joint distribution over all the actual locations H1, . . . ,Hn and sensor readings E1, . . . , En by taking the product

of all the local conditional probabilities.

Inference questions

H1 H2 H3

E1 E2 E3

0 2 2

Question (filtering):

P(H2 | E1 = 0, E2 = 2)

Question (smoothing):

P(H2 | E1 = 0, E2 = 2, E3 = 2)

Note: filtering is a special case of smoothing if marginalize unobserved leaves

CS221 4

• In principle, you could ask any type of questions on an HMM, but there are two common ones: filtering and smoothing.

• Filtering asks for the distribution of some hidden variable Hi conditioned on only the evidence up until that point. This is useful when you’re
doing real-time object tracking, and you can’t see the future.

• Smoothing asks for the distribution of some hidden variable Hi conditioned on all the evidence, including the future. This is useful when
you have collected all the data and want to retrospectively go and figure out what Hi was.

• Note that filtering is a special case of smoothing: if we’re asking for Hi given E1, . . . , Ei, then we can marginalize everything in the future
(since they are just unobserved leaf nodes), reducing the problem to a smaller HMM, where we are smoothing.

Lattice representation

start

H1=0 H2=0 H3=0

H1=1 H2=1 H3=1

H1=2 H2=2 H3=2

end

p(h1 = 0)p(e1 = 0|h1 = 0)

p(h2 = 0|h1 = 0)p(e2 = 2|h2 = 0) p(h3 = 0|h2 = 0)p(e3 = 2|h3 = 0)

• Edge start ⇒ H1 = h1 has weight p(h1)p(e1 | h1)

• Edge Hi−1 = hi−1 ⇒ Hi = hi has weight p(hi | hi−1)p(ei | hi)

• Each path from start to end is an assignment with weight equal to the product of
edge weights

Key: P(Hi = hi | E = e) is the weighted fraction of paths through Hi = hi

CS221 6

• The forward-backward algorithm is based on a form of dynamic programming.

• To develop this, we consider a lattice representation of HMMs. Consider a directed graph (not to be confused with the HMM) with a start
node, an end node, and a node for each assignment of a value to a variable Hi = v. The nodes are arranged in a lattice, where each column
corresponds to one variable Hi and each row corresponds to a particular value v. Each path from the start to the end corresponds exactly to
a complete assignment to the nodes.
• Each edge has a weight (a single number) determined by the local conditional probabilities (more generally, the factors in a factor graph).

For each edge into Hi = hi , we multiply by the transition probability into hi and emission probability p(ei | hi).

• This defines a weight for each path (assignment) in the graph equal to the joint probability P (H = h,E = e).

• Note that the lattice contains O(n|Domain|) nodes and O(n|Domain|2) edges, where n is the number of variables and |Domain| is the number
of values in the domain of each variable (3 in our example).

• Now comes the key point. Recall we want to compute a smoothing question P(Hi = hi | E = e). This quantity is simply the weighted

fraction of paths that pass through Hi = hi . This is just a way of visualizing the definition of the smoothing question.

• There are an exponential number of paths, so it’s intractable to enumerate all of them. But we can use dynamic programming...

Forward and backward messages

start

H1=0 H2=0 H3=0

H1=1 H2=1 H3=1

H1=2 H2=2 H3=2

end

p(h1 = 0)p(e1 = 0|h1 = 0)

p(h2 = 0|h1 = 0)p(e2 = 2|h2 = 0) p(h3 = 0|h2 = 0)p(e3 = 2|h3 = 0)

Forward: Fi(hi) =
∑

hi−1
Fi−1(hi−1)Weight(Hi−1 = hi−1 , Hi = hi)

sum of weights of paths from start to Hi = hi

Backward: Bi(hi) =
∑

hi+1
Bi+1(hi+1)Weight(Hi = hi , Hi+1 = hi+1)

sum of weights of paths from Hi = hi to end

Define Si(hi) = Fi(hi)Bi(hi):

sum of weights of paths from start to end through Hi = hi

CS221 8

• First, define the forward message Fi(v) to be the sum of the weights over all paths from the start node to Hi = v . This can be defined

recursively: any path that goes Hi = hi will have to go through some Hi−1 = hi−1 , so we can sum over all possible values of hi−1.

• Analogously, let the backward message Bi(v) be the sum of the weights over all paths from Hi = v to the end node.

• Finally, define Si(v) to be the sum of the weights over all paths from the start node to the end node that pass through the intermediate node

Xi = v . This quantity is just the product of the weights of paths going into Hi = hi (Fi(hi)) and those leaving it (Bi(hi)).

• This is analogous to factoring: (a+ b)(c+ d) = ab+ ad+ bc+ bd.

• Note: F1(h1) = p(h1)p(e1 = 0 | h1) and Bn(hn) = 1 are base cases, which don’t require the recurrence.

Putting everything together

start

H1=0 H2=0 H3=0

H1=1 H2=1 H3=1

H1=2 H2=2 H3=2

end

p(h1 = 0)p(e1 = 0|h1 = 0)

p(h2 = 0|h1 = 0)p(e2 = 2|h2 = 0) p(h3 = 0|h2 = 0)p(e3 = 2|h3 = 0)

P(Hi = hi | E = e) = Si(hi)∑
v Si(v)

Algorithm: forward-backward algorithm

Compute F1, F2, . . . , Fn

Compute Bn, Bn−1, . . . , B1

Compute Si for each i and normalize

Running time: O(n|Domain|2)

[demo]

CS221 10

• Now the smoothing question P(Hi = hi | E = e) is just equal to the normalized version of Si.

• The algorithm is thus as follows: for each node Hi = hi , we compute three numbers: Fi(hi), Bi(hi), Si(hi). First, we sweep forward to
compute all the Fi’s recursively. At the same time, we sweep backward to compute all the Bi’s recursively. Then we compute Si by pointwise
multiplication.

• The running time of the algorithm is O(n|Domain|2), which is the number of edges in the lattice.

• In the demo, we are running the variable elimination algorithm, which is a generalization of the forward-backward algorithm for arbitrary
Markov networks. As you step through the algorithm, you can see that the algorithm first computes a forward message F2 and then a
backward message B2, and then it multiplies everything together and normalizes to produce P(H2 | E1 = 0, E2 = 2, E3 = 2). The names
and details don’t match up exactly, so you don’t need to look too closely.
• Implementation note: we technically can normalize Si to get P(Hi | E = e) at the very end but it’s useful to normalize Fi and Bi at each

step to avoid underflow. In addition, normalization of the forward messages yields P(Hi = v | E1 = e1, . . . , Ei = ei) which are exactly the
filtering queries!

Summary

start

H1=0 H2=0 H3=0

H1=1 H2=1 H3=1

H1=2 H2=2 H3=2

end

p(h1 = 0)p(e1 = 0|h1 = 0)

p(h2 = 0|h1 = 0)p(e2 = 2|h2 = 0) p(h3 = 0|h2 = 0)p(e3 = 2|h3 = 0)

• Lattice representation: paths are assignments

• Dynamic programming: compute sums efficiently

• Forward-backward algorithm: compute all smoothing questions, share intermediate com-
putations

CS221 12

• In summary, we have presented the forward-backward algorithm for probabilistic inference in HMMs, in particular smoothing queries.

• The algorithm is based on the lattice representation in which each path is an assignment, and the weight of path is the joint probability.

• Smoothing is just then asking for the weighted fraction of paths that pass through a given node.

• Dynamic programming can be used to compute this quantity efficiently.

• This is formalized using the forward-backward algorithm, which consists of two sets of recurrences.

• Note that the forward-backward algorithm gives you the answer to all the smoothing questions (P(Hi = hi | E = e) for all i), because the
intermediate computations are all shared.

