
Bayesian networks: particle filtering
• In this module, I will present the particle filtering algorithm for performing approximate inference in Hidden Markov models which is useful

when the size of the domain of the variables is large.

Review: Hidden Markov models for object tracking

0 1 2 3 4

time i

0

1

2

3

p
os
it
io
n
H

i

H1 H2 H3

E1 E2 E3

start transition emission

1/3

1/3

1/3

H1

Hi−1

1/4

1/2

1/4

Hi

Hi

1/4

1/2

1/4

Ei

h1 p(h1)

0 1/3

1 1/3

2 1/3

hi p(hi | hi−1)

hi−1 − 1 1/4

hi−1 1/2

hi−1 + 1 1/4

ei p(ei | hi)

hi − 1 1/4

hi 1/2

hi + 1 1/4

P(H = h,E = e) = p(h1)︸ ︷︷ ︸
start

n∏
i=2

p(hi | hi−1)︸ ︷︷ ︸
transition

n∏
i=1

p(ei | hi)︸ ︷︷ ︸
emission

CS221 2

• Recall that HMM for object tracking.

• Each each point in time, an object has an position Hi, which gives rise to a sensor reading Ei. We start with H1 uniform over positions,
transition from Hi−1 to Hi with 1/2 probability on the same location and 1/4 probability on an adjacent location. We emit the sensor reading
analogously. Multiply everything together to form the joint distribution over locations H1, . . . ,Hn and sensor readings E1, . . . , En.

Review: inference in Hidden Markov models

H1 H2 H3

E1 E2 E3

0 2 2

Filtering questions:

P(H1 | E1 = 0)

P(H2 | E1 = 0, E2 = 2)

P(H3 | E1 = 0, E2 = 2, E3 = 2)

Problem: many possible location values for Hi

Forward-backward is too slow (O(n|Domain|2))...

CS221 4

• Recall that the two common types of inference questions we ask on HMMs are filtering and smoothing.

• Particle filtering, as the name might suggest, performs filtering, so let us focus on that. Filtering asks for the probability distribution over
object location Hi at a current time step i given the past observations E1 = e1, . . . , Ei = ei.

• Last time, we saw that the forward-backward algorithm could already solve this. But it runs in O(n|Domain|2), where |Domain| is the number
of possible values (e.g., locations) that Hi can take on. On this example, Hi ∈ {0, 1, 2} but for real applications, there could easily be
hundreds of thousands of values, not to mention what happens if Hi is continuous. This could be a very large number, which makes the
forward-backward algorithm very slow (even if it’s not exponentially so).
• The motivation of particle filtering is to perform approximate probabilistic inference, and leverages the fact that most of the locations are

very improbable given evidence.

• Particle filtering actually applies to general factor graphs, but we will present them for hidden Markov models for concreteness.

Beam search for HMMs

Idea: keep ≤ K partial assignments (particles)

H1 H2 H3

E1 E2 E3

0 2 2

Algorithm: beam search

Initialize C ← [{}]
For each i = 1, . . . , n:

Extend:

C ′ ← {h ∪ {Hi : v} : h ∈ C, v ∈ Domaini}
Prune:

C ← K particles of C ′ with highest weights

Normalize weights to get approximate P̂(H1, . . . ,Hn | E = e)

Sum probabilities to get any approximate P̂(Hi | E = e)

[demo: beamSearch({K:3})]

CS221 6

• Our starting point for motivating particle filtering is beam search, an algorithm for finding an approximate maximum weight assignment in
arbitrary constraint satisfaction problems (CSPs).
• Since HMMs are Bayesian networks, which are Markov networks, which have an underlying factor graph, we can simply apply beam search to

HMMs (for now putting aside the goal of finding the maximum weight assignment).
• Recall that beam search maintains a list of candidate partial assignments to the first i variables. There are two phases. In the first phase,

we extend all the existing candidates C to all possible assignments to Hi; this results in K = |Domain| candidates C ′. We then take the
subset of K candidates with the highest weight, where the weight of a partial assignment is simply the product of all the factors (transitions,
emissions) that can be computed on the partial assignment.

• In the demo, we start with partial assignments to H1, whose weights are given by p(h1)p(e1 = 0 | h1). In the next step, we can multiply in
factors p(h2 | h1)p(e2 = 2 | h2), and so on.

• At the very end, we obtain K = 3 complete assignments, each with a weight (equal to the joint probability of the assignment and observations).
We can normalize these weights to form an approximate distribution over all assignments (conditioned on the observations). From here, we
can manually compute any marginal probabilities (e.g., P(H3 = 2 | E = e)) by summing the probabilities of assignments satisfying the given
condition (e.g., H3 = 2).

Beam search problems

Algorithm: beam search

Initialize C ← [{}]
For each i = 1, . . . , n:

Extend:

C ′ ← {h ∪ {Hi : v} : h ∈ C, v ∈ Domaini}
Prune:

C ← K particles of C ′ with highest weights

• Extend: slow because requires considering every possible value for Hi

• Prune: greedily taking best K doesn’t provide diversity

Particle filtering solution (3 steps): propose, weight, resample

CS221 8

• There are two problems with beam search.

• First, beam search can be slow if Domain is large, since we might have to try every single candidate value hi to assign Hi. In some cases, we
can efficiently generate only the values hi that have nonzero transition probability (p(hi | hi−1 > 0), for example, if we know that hi must
be within a certain distance of hi−1 (can’t teleport). But if we wanted to track the object to high resolution, there might still be too many
values to consider.

• Second, beam search greedily takes the K highest weight candidates at each time step. This could be dangerous, since we might end up with
many assignments that are only slightly different, and not truly representative of the actual distribution. You can think of this as a form of
overfitting.
• Particle filtering addresses both of these problems. It has three steps: propose, which extends the current partial assignment, and reweight +

resample, which redistributes resources on the particles based on evidence.

Step 1: propose

Old particles: ≈ P(H1, H2 | E1 = 0, E2 = 2)

{H1 : 0, H2 : 1}
{H1 : 1, H2 : 2}

Key idea: proposal distribution

For each old particle (h1, h2), sample H3 ∼ p(h3 | h2).

hi p(hi | hi−1)

hi−1 − 1 1/4

hi−1 1/2

hi−1 + 1 1/4

New particles: ≈ P(H1, H2, H3 | E1 = 0, E2 = 2)

{H1 : 0, H2 : 1, H3 : 1}
{H1 : 1, H2 : 2, H3 : 2}

CS221 10

• At each stage of the particle filtering, we can think of our set of particles C as approximating a certain distribution.

• Suppose we have a set of particles that approximates the filtering distribution over H1, H2. The first step is to extend each current partial
assignment (particle) from (h1, . . . , hi−1) to (h1, . . . , hi).

• To do this, we simply go through each particle and sample a new value hi using the transition probability p(hi | hi−1).

• We can think of advancing each particle according to the dynamics of the HMM. These extended particles approximate the probability of
H1, H2, H3, but still conditioned on the same evidence.

• In some cases (e.g., the transitions are Gaussian), sampling h3 is very easy compared to enumerating all possible of h3. (Indeed, the advantages
of particle filtering are clearer in continuous state spaces.).

Step 2: weight

Old particles: ≈ P(H1, H2, H3 | E1 = 0, E2 = 1)

{H1 : 0, H2 : 1 : H3 : 1}
{H1 : 1, H2 : 2 : H3 : 2}

Key idea: weighting based on evidence

For each old particle (h1, h2, h3), weight it by p(e3 = 2 | h3).

h3 p(e3 = 2 | h3)

0 0

1 1/4

2 1/2

New particles: ≈ P(H1, H2, H3 | E1 = 0, E2 = 1, E3 = 2)

{H1 : 0, H2 : 1 : H3 : 1} (1/4)
{H1 : 1, H2 : 2 : H3 : 2} (1/2)

CS221 12

• Having generated a set of K candidates, we need to now take into account the new evidence Ei = ei. This is a deterministic step that simply
weights each particle by the probability of generating Ei = ei, which is the emission probability p(ei | hi).

• Intuitively, the proposal was just a guess about where the object will be H3, but we need to fact check this guess.

• In this example, we observed E3 = 2, so we need to weight the two particles by p(e3 = 2 | h3 = 1) = 1/4 and p(e3 = 2 | h3 = 2) = 1/2,
respectively.

Step 3: resample

Old particles: ≈ P(H1, H2, H3 | E1 = 0, E2 = 2, E3 = 2)

{H1 : 0, H2 : 1 : H3 : 1} (1/4) ⇒ 1/3

{H1 : 1, H2 : 2 : H3 : 2} (1/2) ⇒ 2/3

Key idea: resampling

Normalize weights and draw K samples to redistribute particles to more promising
areas.

New particles: ≈ P(H1, H2, H3 | E1 = 0, E2 = 2, E3 = 2)

{H1 : 1, H2 : 2 : H3 : 2}
{H1 : 1, H2 : 2 : H3 : 2}

CS221 14

• At this point, we have a set of weighted particles representing the desired filtering distribution.

• However, if some of the weights are small, this could be wasteful. In the extreme case, any particle with zero weight should just be thrown
out.

• The K particles can be viewed as our limited resources for representing the distribution, the resampling step attempts to redistribute these
precious resources to places in the distribution that are more promising.

• To this end, we will normalize the weights to form a distribution over the particles (similar to what we did at the end of beam search). Then
we sample K times from this distribution.

• In this example, we happened to get two occurrences of the second particle, but we might have easily gotten one of each or even two of the
first.

Why sampling?

distribution K with highest weight K sampled from distribution

not representative more representative

Sampling is especially important when there is high uncertainty!

CS221 16

• You might wonder why we are resampling, leaving the result of the algorithm up to chance.

• To see why resampling can be more favorable than beam search, consider the setting where we start with a set of particles on the left where
the weights are given by the shade of red (darker is more weight). Notice that the weights are all quite similar (i.e., the distribution is close
to the uniform distribution).

• Beam search chooses the K locations with the highest weight, which would clump all the particles near the mode. This is risky, because we
have no support out farther from the center, where there is actually substantial probability.

• However, if we sample from the distribution which is proportional to the weights, then we can hedge our bets and get a more representative
set of particles which cover the space more evenly.

• In cases where the original weights much more skewed towards a few particles, then taking the highest weight particles is fine and perhaps
even slightly better than resampling.

Particle filtering

Algorithm: particle filtering

Initialize C ← [{}]
For each i = 1, . . . , n:

Propose:

C ′ ← {h ∪ {Hi : hi} : h ∈ C, hi ∼ p(hi | hi−1)}
Weight:

Compute weights w(h) = p(ei | hi) for h ∈ C ′

Resample:

C ← K particles drawn independently from w(h)∑
h′∈C w(h′)

[demo: particleFiltering({K:100})]

CS221 18

• We now present the final particle filtering algorithm, which is structurally similar to beam search. We go through all the variables H1, . . . ,Hn.

• For each candidate h ∈ C, we propose hi according to the transition distribution p(hi | hi−1).

• We then weight this particle using the emission probability w(h) = p(ei | hi).

• Finally, we normalize the weights {w(h) : h ∈ C} and sample K particles independently from this distribution.

• In the demo, we can go through the extend (propose) and prune (weight + resample) steps, ending with a final set of full assignments, which
can be used to approximate the filtering distribution P(H3 | E = e).

Particle filtering: implementation

For filtering questions, can optimize:

• Keep only value of last Hi for each particle

• Store count for each unique particle

{H1 : 0, H2 : 1 : H3 : 1}
{H1 : 0, H2 : 1 : H3 : 1}
{H1 : 1, H2 : 2 : H3 : 2}
{H1 : 1, H2 : 1 : H3 : 2}
{H1 : 1, H2 : 2 : H3 : 2}

1

1

2

2

2

1 (2x)

2 (3x)

CS221 20

• So far, we have presented a version of particle filtering where each particle at the end is a full assignment to all the variables. This allows us
to approximately answer a variety of different questions based on the induced distribution.

• However, if we’re only interested in filtering questions, then we can perform two optimizations.

• First, in tracking applications, we only care about the last location Hi, and future steps only depend on the value of Hi. Therefore, we often
just store the value of Hi rather than the entire trajectory.

• Second, since we have discrete variables, many particles might have the same value of Hi, so we can just store the counts of each value rather
than storing duplicate values.

Particle filtering demo

[see web version]

CS221 22

• Now let us visualize particle filtering in a more realistic, interactive object tracking setting.

• Consider an object is moving around in a grid and we are trying to figure out its location Hi ∈ {1, . . . , grid-width} × {1, . . . , grid-height}.

• The transition distribution places a uniform distribution over moving north, moving south, moving east, moving west, or staying put.

• The emission distribution places a uniform distribution over locations Ei that are within 3 steps (both vertically and horizontally) of the actual
position Hi. In the textbox, you can change the emission distribution dynamically (observeFactor).

• When you hit ctrl-enter, you can see the noisy sensor readings (visualized as a yellow dot bouncing around).

• If you increase the number of particles, you can see a red cloud representing where the particles are, where the intensity of a square is
proportional to the number of particles in that square.

• You can now set showTruePosition = true to see the actual Hi that generated Ei. You can see that the cloud is able to track the true
location reasonably well, although there are occasional errors.

Summary

H1 H2 H3

E1 E2 E3

0 2 2

P(H3 | E1 = 0, E2 = 2, E3 = 2)

• Use particles to represent an approximate distribution

Propose (transitions) Weight (emissions) Resample

• Can scale to large number of locations (unlike forward-backward)

• Maintains better particle diversity (compared to beam search)

CS221 24

• In summary, we have presented particle filtering, an inference algorithm for HMMs that approximately computes filtering questions of the
form: where is the object currently given all the past noisy sensor readings?

• Particle filtering represents distributions over hidden variables with a set of particles. To advance the particles to the next time step, it
proposes new positions based on transition probabilities. It then weights these guesses based on evidence from the emission probabilities.
Finally, it resamples from the normalized weights to redistribute the precious particle resources.

• Compared to the forward-backward algorithm, both beam search and particle filtering can scale up to a large number of locations (assuming
most of them are unlikely). Unlike beam search, however, particle filtering uses randomness to ensure better diversity of the particles.

• Particle filtering is also called sequential Monte Carlo and there are many more sophisticated extensions that I’d encourage to learn about.

