
Bayesian networks: smoothing
• In this module, I’ll talk about how Laplace smoothing for guarding against overfitting.

Review: maximum likelihood

G R P(G = g,R = r) = pG(g)pR(r | g)

Dtrain = {(d, 4), (d, 4), (d, 5), (c, 1), (c, 5)}

θ:

g countG(g) pG(g)

d 3 3/5

c 2 2/5

g r countR(g, r) pR(r | g)
d 4 2 2/3

d 5 1 1/3

c 1 1 1/2

c 5 1 1/2

Do we really believe that pR(r = 2 | g = c) = 0?

Overfitting!
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• Suppose we have a two-variable Bayesian network whose parameters (local conditional distributions) we don’t know.

• Instead, we obtain training data, where each example includes a full assignment.

• Recall that maximum likelihood estimation in a Bayesian network is given by a simple count + normalize algorithm.

• But is this a reasonable thing to do? Consider the probability of a 2 rating given comedy? It’s hard to believe that there is zero chance of
this happening. That would be very closed-minded.

• This is a case where maximum likelihood has overfit to the training data!

Laplace smoothing example

Idea: just add λ = 1 to each count

Dtrain = {(d, 4), (d, 4), (d, 5), (c, 1), (c, 5)}

θ:

g countG(g) pG(g)

d 1+3 4/7

c 1+2 3/7

g r countR(g, r) pR(g, r)

d 1 1 1/8

d 2 1 1/8

d 3 1 1/8

d 4 1+2 3/8

d 5 1+1 2/8

c 1 1+1 2/7

c 2 1 1/7

c 3 1 1/7

c 4 1 1/7

c 5 1+1 2/7

Now pR(r = 2 | g = c) = 1
7 > 0
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• There is a very simple patch to this form of overfitting called Laplace smoothing: just add some small constant λ (called a pseudocount
or virtual count) for each possible value, regardless of whether it was observed or not.

• As a concrete example, let’s revisit the two-variable model from before.

• We preload all the counts (now we have to write down all the possible assignments to g and r) with λ. Then we add the counts from the
training data and normalize all the counts.

• Note that many values which were never observed in the data have positive probability as desired.



Laplace smoothing

Key idea: maximum likelihood with Laplace smoothing

For each distribution d and partial assignment (xParents(i), xi):

Add λ to countd(xParents(i), xi).

Further increment counts {countd} based on Dtrain.

Hallucinate λ occurrences of each local assignment
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• More formally, when we do maximum likelihood with Laplace smoothing with smoothing parameter λ > 0, we add λ to the count for each
distribution d and local assignment (xParents(i), xi). Then we increment the counts based on the training data Dtrain.

• Advanced: Laplace smoothing can be interpreted as using a Dirichlet prior over probabilities and doing maximum a posteriori (MAP) estimation.

Interplay between smoothing and data

Larger λ ⇒ more smoothing ⇒ probabilities closer to uniform

g countG(g) pG(g)

d 1/2+1 3/4

c 1/2 1/4

g countG(g) pG(g)

d 1+1 2/3

c 1 1/3

Data wins out in the end (suppose only see g = d):

g countG(g) pG(g)

d 1+1 2/3

c 1 1/3

g countG(g) pG(g)

d 1+998 0.999

c 1 0.001
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• By varying λ, we can control how much we are smoothing. The larger the λ, the stronger the smoothing, and the closer the resulting
probability estimates become to the uniform distribution.

• However, no matter what the value of λ is, as we get more and more data, the effect of λ will diminish. This is desirable, since if we have a
lot of data, we should be able to trust our data more and more.

Summary

g countG(g) pG(g)

d λ+ 1 1+λ
1+2λ

c λ λ
1+2λ

• Pull distribution closer to uniform distribution

• Smoothing gets washed out with more data
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• In conclusion, Laplace smoothing provides a simple way to avoid overfitting by adding a smoothing parameter λ to all the counts, pulling the
final probability estimates away from any zeros and towards the uniform distribution.

• But with more amounts of data, then the effect of smoothing wanes.


