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e In this module, I'll talk about how Laplace smoothing for guarding against overfitting.



Review: maximum likelihood

@—@ P(G=g,R=7)=pc(9)pr(r|g)

Dirrain = {(dv 4)7 (da 4)7 (dv 5)7 (Cv 1)7 (C7 5)}

g r countg(g,r) pr(r|g)
g countg(g) pa(g) d 4 2 2/3
9: | d 3 3/5 d 5 1 1/3
c 2 2/5 c 1 1 1/2
c 5 1 1/2

Do we really believe that pr(r=2|g=c) =07

Overfitting!
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Suppose we have a two-variable Bayesian network whose parameters (local conditional distributions) we don’t know.
Instead, we obtain training data, where each example includes a full assignment.

Recall that maximum likelihood estimation in a Bayesian network is given by a simple count 4+ normalize algorithm.

But is this a reasonable thing to do? Consider the probability of a 2 rating given comedy? It's hard to believe that there is zero chance of
this happening. That would be very closed-minded.

This is a case where maximum likelihood has overfit to the training datal



Laplace smoothing example

ldea: just add A = 1 to each count

Dirain = {(d7 4)7 (da 4)7 (da 5)7 (Ca 1)7 (Ca 5)}

g r countgr(g,7) pr(g,r)
d 1 1 1/8
d 2 1 1/8
d 3 1 1/8
g countg(g) pal(g) d 4 142 3/8
6. |d 1+3  4/7 d 5 1+1 2/8
C 1+2  3/7 c 1 1+1 2/7
c 2 1 1/7
c 3 1 1/7
c 4 1 1/7
c b 1+1 2/7
1
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There is a very simple patch to this form of overfitting called Laplace smoothing: just add some small constant A (called a pseudocount
or virtual count) for each possible value, regardless of whether it was observed or not.

As a concrete example, let's revisit the two-variable model from before.

We preload all the counts (now we have to write down all the possible assignments to g and 7) with A. Then we add the counts from the
training data and normalize all the counts.

Note that many values which were never observed in the data have positive probability as desired.
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Laplace smoothing

—:@' Key idea: maximum likelihood with Laplace smoothing

For each distribution d and partial assighment (Zparents(i)» %4 ):

Add A to county(Zparents(i), Ti)-

Further increment counts {county} based on Diain.

Hallucinate )\ occurrences of each local assignment




e More formally, when we do maximum likelihood with Laplace smoothing with smoothing parameter A > 0, we add X to the count for each
distribution d and local assignment (Zparents(i); i). Then we increment the counts based on the training data Diy,n.

e Advanced: Laplace smoothing can be interpreted as using a Dirichlet prior over probabilities and doing maximum a posteriori (MAP) estimation.



Interplay between smoothing and data

Larger A = more smoothing = probabilities closer to uniform

g countg(g) pa(g) g countg(g) pa(g)
d  1/241 3/4 d 1+1  2/3
c 1/2 1/4 c 1 1/3

Data wins out in the end (suppose only see g = d):

g countg(g) pcl(g) g countg(g) pa(g)
d 1+1  2/3 d 14998 0.999

C 1 1/3 C 1 0.001
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e By varying A\, we can control how much we are smoothing. The larger the ), the stronger the smoothing, and the closer the resulting

probability estimates become to the uniform distribution.
e However, no matter what the value of A is, as we get more and more data, the effect of A\ will diminish. This is desirable, since if we have a

lot of data, we should be able to trust our data more and more.
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Summary

g countg(g) pc(9)

d \+1 fjﬁ
A
C A 149N

e Pull distribution closer to uniform distribution

e Smoothing gets washed out with more data

10



e In conclusion, Laplace smoothing provides a simple way to avoid overfitting by adding a smoothing parameter A to all the counts, pulling the
final probability estimates away from any zeros and towards the uniform distribution.

e But with more amounts of data, then the effect of smoothing wanes.



