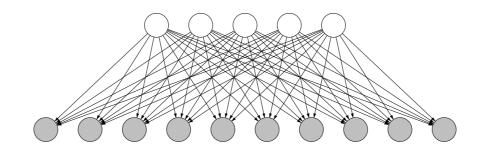


Bayesian networks: smoothing



• In this module, I'll talk about how Laplace smoothing for guarding against overfitting.

Review: maximum likelihood

 $\mathcal{D}_{\mathsf{train}} = \{(\mathsf{d},4), (\mathsf{d},4), (\mathsf{d},5), (\mathsf{c},1), (\mathsf{c},5)\}$

]	g	r	$count_R(g,r)$	$p_R(r \mid g)$
	g	$count_G(g)$	$p_G(g)$		d	4	2	2/3
θ :	d	3	3/5		d	5	1	1/3
	с	2	2/5		с	1	1	1/2
					с	5	1	1/2

Do we really believe that $p_R(r = 2 | g = c) = 0$?

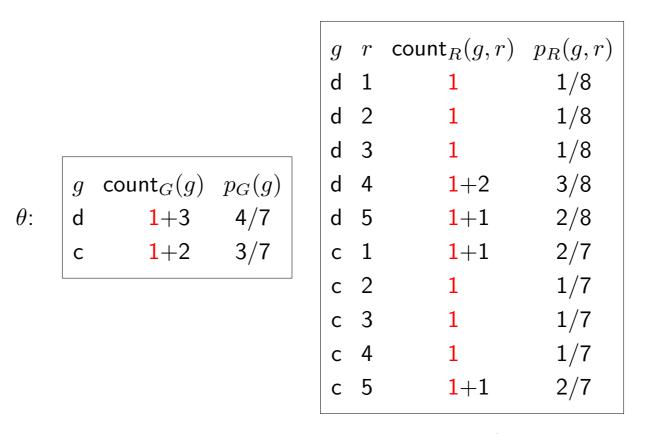
Overfitting!

- Suppose we have a two-variable Bayesian network whose parameters (local conditional distributions) we don't know.
- Instead, we obtain training data, where each example includes a full assignment.
- Recall that maximum likelihood estimation in a Bayesian network is given by a simple count + normalize algorithm.
- But is this a reasonable thing to do? Consider the probability of a 2 rating given comedy? It's hard to believe that there is zero chance of this happening. That would be very closed-minded.
- This is a case where maximum likelihood has overfit to the training data!

Laplace smoothing example

Idea: just add $\lambda = 1$ to each count

 $\mathcal{D}_{\mathsf{train}} = \{(\mathsf{d}, 4), (\mathsf{d}, 4), (\mathsf{d}, 5), (\mathsf{c}, 1), (\mathsf{c}, 5)\}$



Now
$$p_R(r=2 \mid g=c) = \frac{1}{7} > 0$$

- There is a very simple patch to this form of overfitting called Laplace smoothing: just add some small constant λ (called a pseudocount or virtual count) for each possible value, regardless of whether it was observed or not.
- As a concrete example, let's revisit the two-variable model from before.
- We preload all the counts (now we have to write down all the possible assignments to g and r) with λ . Then we add the counts from the training data and normalize all the counts.
- Note that many values which were never observed in the data have positive probability as desired.

Laplace smoothing

Key idea: maximum likelihood with Laplace smoothing-

For each distribution d and partial assignment $(x_{Parents(i)}, x_i)$:

Add λ to count_d($x_{\text{Parents}(i)}, x_i$).

Further increment counts $\{count_d\}$ based on \mathcal{D}_{train} .

Hallucinate λ occurrences of each local assignment

- More formally, when we do maximum likelihood with Laplace smoothing with smoothing parameter $\lambda > 0$, we add λ to the count for each distribution d and local assignment $(x_{\text{Parents}(i)}, x_i)$. Then we increment the counts based on the training data $\mathcal{D}_{\text{train}}$.
- Advanced: Laplace smoothing can be interpreted as using a Dirichlet prior over probabilities and doing maximum a posteriori (MAP) estimation.

Interplay between smoothing and data

Larger $\lambda \Rightarrow$ more smoothing \Rightarrow probabilities closer to uniform

g	$count_G(g)$	$p_G(g)$	g	$count_G(g)$	$p_G(g)$
d	1/2+1	3/4	d	1 +1	2/3
С	1/2	1/4	с	1	1/3

Data wins out in the end (suppose only see g = d):

g d	$count_G(g)$ 1+1	$p_G(g)$ 2/3	gd	$\operatorname{count}_G(g)$ 1+998	
С	1	1/3	С	1	0.001

- By varying λ , we can control how much we are smoothing. The larger the λ , the stronger the smoothing, and the closer the resulting probability estimates become to the uniform distribution.
- However, no matter what the value of λ is, as we get more and more data, the effect of λ will diminish. This is desirable, since if we have a lot of data, we should be able to trust our data more and more.

$$\begin{array}{ll}g & \mathsf{count}_G(g) & p_G(g) \\ \mathsf{d} & \lambda + 1 & \frac{1+\lambda}{1+2\lambda} \\ \mathsf{c} & \lambda & \frac{\lambda}{1+2\lambda} \end{array}$$

• Pull distribution closer to uniform distribution

• Smoothing gets washed out with more data

- In conclusion, Laplace smoothing provides a simple way to avoid overfitting by adding a smoothing parameter λ to all the counts, pulling the final probability estimates away from any zeros and towards the uniform distribution.
- But with more amounts of data, then the effect of smoothing wanes.