
CSPs: definitions



• In this module, I will formally define constraint satisfaction problems as well as the more general notion of a factor graph.



Factor graph example: voting

definitely

blue

B or R? must

agree

B or R? tend to

agree

B or R? leaning

red

X1 X2 X3

f1 f2 f3 f4

x1 f1(x1)

R 0

B 1

x1 x2 f2(x1, x2)

R R 1

R B 0

B R 0

B B 1

x2 x3 f3(x2, x3)

R R 3

R B 2

B R 2

B B 3

x3 f4(x3)

R 2

B 1

f1(x1) = [x1 = B] f2(x1, x2) = [x1 = x2] f3(x2, x3) = [x2 = x3] + 2 f4(x3) = [x3 = R] + 1

[demo]

CS221 2



• Let us provide an example of a factor graph.

• Suppose there are three people, each of which will vote for a color, red or blue. We know that Person 1 is dead set on blue, while Person 3
is leaning red. Person 1 and Person 2 are close friends and must vote on the same color, while Person 2 and Person 3 are acquaintences who
only weakly prefer to have the same color. The question is how each person will vote given their influences on each other?

• We can model this situation as a factor graph consisting of three variables, X1, X2, X3, each of which must be assigned red (R) or blue (B).

• We encode each of the constraints/preferences as a factor, which assigns a non-negative number based on the assignment to a subset of the
variables.

• We can either describe the factor as an explicit table, or via a function (e.g., [x1 = x2]).

• Notation: we use [condition] to represent the indicator function which is equal to 1 if the condition is true and 0 if not. Normally, this is
written 1[condition], but we drop the 1 for succinctness.



Example: map coloring

WA

NT

SA

Q

NSW

V

T

Variables:

X = (WA,NT,SA,Q,NSW,V,T)

Domaini ∈ {R,G,B}
Factors:

f1(X) = [WA 6= NT]

f2(X) = [NT 6= Q]

...

CS221 4



• Let’s revisit the map coloring example.

• For each province, we have a variable, whose domain is the three colors.

• We have one factor for each pair of neighboring provinces which returns 1 (okay) if the two colors are not equal and 0 otherwise.



Factor graph

X1 X2 X3

f1 f2 f3 f4

Definition: factor graph

Variables:

X = (X1, . . . , Xn), where Xi ∈ Domaini

Factors:

f1, . . . , fm, with each fj(X) ≥ 0

CS221 6



• Now we proceed to the general definition. A factor graph consists of a set of variables and a set of factors: (i) n variables X1, . . . , Xn, which
are represented as circular nodes in the graphical notation; and (ii) m factors (also known as potentials) f1, . . . , fm, which are represented as
square nodes in the graphical notation.

• Each variable Xi can take on values in its domain Domaini. Each factor fj is a function that takes an assignment x to all the variables and
returns a non-negative number representing how good that assignment is (from the factor’s point of view). Usually, each factor will depend
only on a small subset of the variables.



Factors

Definition: scope and arity

Scope of a factor fj : set of variables it depends on.

Arity of fj is the number of variables in the scope.

Unary factors (arity 1); Binary factors (arity 2).

Constraints are factors that return 0 or 1.

WA

NT

SA

Q

NSW

V

T

Example: map coloring

Scope of f1(X) = [WA 6= NT] is {WA,NT}
f1 is a binary constraint

CS221 8



• The key aspect that makes factor graphs useful is that each factor fj only depends on a subset of variables, called the scope.

• The arity of the factors is generally small (think 1 or 2).

• Factors that return 0 or 1 are called constraints. A constraint is satisfied iff a constraint returns 1.



Assignment weights example: voting

x1 f1(x1)

R 0

B 1

x1 x2 f2(x1, x2)

R R 1

R B 0

B R 0

B B 1

x2 x3 f3(x2, x3)

R R 3

R B 2

B R 2

B B 3

x3 f4(x3)

R 2

B 1

x1 x2 x3 Weight

R R R 0 · 1 · 3 · 2 = 0

R R B 0 · 1 · 2 · 1 = 0

R B R 0 · 0 · 2 · 2 = 0

R B B 0 · 0 · 3 · 1 = 0

B R R 1 · 0 · 3 · 2 = 0

B R B 1 · 0 · 2 · 1 = 0

B B R 1 · 1 · 2 · 2 = 4

B B B 1 · 1 · 3 · 1 = 3

[demo]
CS221 10



• An assignment specifies a value for each variable, which is a candidate solution.

• Recall that the factors specify local interactions between variables.

• For each assignment, we get its weight, which is defined to be the product over each factor evaluated on that assignment.

• Each factor makes a contribution to the weight. Note that any factor has veto power: if it returns zero, then the weight of the entire
assignment is irrecoverably zero.

• Think of all the factors chiming in on their opinion of x. We multiply all these opinions together to get the global opinion.

• In this setting, the maximum weight assignment is (B,B,R), which has a weight of 4. This is the assignment we wish to return.



Example: map coloring

WA

NT

SA

Q

NSW

V

T

Assignment:
x = {WA : R,NT : G,SA : B,Q : R,NSW : G,V : R,T : G}

Weight:

Weight(x) = 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 = 1

Assignment:
x′ = {WA : R,NT : R,SA : B,Q : R,NSW : G,V : R,T : G}

Weight:

Weight(x′) = 0 · 0 · 1 · 1 · 1 · 1 · 1 · 1 · 1 = 0

CS221 12



• Consider the map coloring example. Here we are writing an assignment as a dictionary from variable (name) to value.

• For the first assignment, all the constraints (factors) are satisfied and evaluates to 1.

• For the second assignment, WA and NT have the same color (red), so [WA 6= NT] = 0. This zeros out the weight for the entire assignment.



Assignment weights

Definition: assignment weight

Each assignment x = (x1, . . . , xn) has a weight:

Weight(x) =
m∏
j=1

fj(x)

An assignment is consistent if Weight(x) > 0.

Objective: find the maximum weight assignment

argmax
x

Weight(x)

A CSP is satisfiable if maxx Weight(x) > 0.

CS221 14



• Formally, the weight of an assignment x is the product of all the factors applied to that assignment (
∏m

j=1 fj(x)). We say that an assignment
is consistent if it has a non-zero weight.

• The objective in constraint satisfaction problem (what it means to solve a CSP) is to find the maximum weight assignment. A CSP is
satisfiable if there exists a consistent assignment.

• Note: strictly speaking, a CSP only contains factors which are constraints (that return 0 or 1), but we consider a more general version of
CSPs where weights can be arbitrary.

• Note: do not confuse the term ”weight” in the context of factor graphs with the ”weight vector” in machine learning.



Constraint satisfaction problems

Boolean satisfiability (SAT):

variables are booleans, factors are logical formulas [X1 ∨ ¬X2 ∨X5]

Linear programming (LP):

variables are reals, factors are linear inequalities [X2 + 3X5 ≤ 1]

Integer linear programming (ILP):

variables are integers, factors are linear inequalities

Mixed integer programming (MIP):

variables are reals and integers, factors are linear inequalities

CS221 16



• Constraint satisfaction problems are a general umbrella term that captures several important special cases, which are widely studied in the
mathematical programming community.

• In SAT, all variables are boolean-valued and factors (constraints) are logical formulas. The goal is just to find any consistent assigment.
While SAT is NP-complete, there has been extraordinary progress in SAT solving, and we can routinely solve SAT instances much larger than
theory would predict.

• In linear programming, the variables are real-valued, and factors are linear inequalities. These problems can be solved efficiently using
specialized methods (e.g., the simplex algorithm)

• ILPs and MIPs are hard to solve in general because they include integer values.



Summary

X1 X2 X3

f1 f2 f3 f4

Variables, factors: specify locally

Weight({X1 : B, X2 : B, X3 : R}) = 1 · 1 · 2 · 2 = 4

Assignments, weights: optimize globally

CS221 18



• In summary, we have formally defined factor graphs, where variables represent unknown quantities, and factors specify preferences for partial
assignments. These allow us to specify preferences in a modular way: just ”throw in” any desiderata you have.

• The weight of an assignment is the product of all the factors. The objective in solving a CSP is to find the maximum weight assignment,
which is a global notion that must take into account all the factors at once.


