
CSPs: local search
• In this module, I will talk about local search, a strategy for approximately computing the maximum weight assignment in a CSP.

Review: CSPs

X1 X2 X3

f1 f2 f3 f4

Definition: factor graph

Variables:

X = (X1, . . . , Xn), where Xi ∈ Domaini

Factors:

f1, . . . , fm, with each fj(X) ≥ 0

Definition: assignment weight

Each assignment x = (x1, . . . , xn) has a weight:

Weight(x) =
m∏
j=1

fj(x)

Objective:

argmax
x

Weight(x)

CS221 2

• Recall that a constraint satisfaction problem is defined by a factor graph, where we have a set of variables and a set of factors. Each assignment
of values to variables has a weight, and the objective is to find the assignment with the maximum weight.

Search strategies

Backtracking/beam search: extend partial assignments

Local search: modify complete assignments

CS221 4

• So far, we’ve seen both backtracking and beam search. These search algorithms build up a partial assignment incrementally, and are structured
around an ordering of the variables (even if it’s dynamically chosen). With backtracking search, we can’t just go back and change the value
of a variable much higher in the tree due to new information; we have to wait until the backtracking takes us back up, in which case we lose
all the information about the more recent variables. With beam search, we can’t even go back at all.

• Local search (i.e., hill climbing) provides us with additional flexibility. Instead of building up partial assignments, we work with a complete
assignment and make repairs by changing one variable at a time.

Example: object tracking

0 1 2 3 4

time i

0

1

2

3

p
os
it
io
n
X

i

X1 X2 X3

t1

o1

0

t2

o2

2

o3

2

x1 o1(x1)

0 2

1 1

2 0

x2 o2(x2)

0 0

1 1

2 2

x3 o3(x3)

0 0

1 1

2 2

|xi − xi+1| ti(xi, xi+1)

0 2

1 1

2 0

[demo]

CS221 6

• Recall the object tracking example in which we observe noisy sensor readings 0, 2, 2.

• We have observation factors oi that encourage the position Xi and the corresponding sensor reading to be nearby.

• We also have transition factors ti that encourage the positions Xi and Xi+1 to be nearby.

One small step

X1 X2 X3

t1

o1

0

0
t2

o2

2

0

o3

2

1

Old assignment: (0, 0, 1); how to improve?

(x1, v, x3) weight

(0, 0, 1) 2 · 2 · 0 · 1 · 1 = 0

(0, 1, 1) 2 · 1 · 1 · 2 · 1 = 4

(0, 2, 1) 2 · 0 · 2 · 1 · 1 = 0

New assignment: (0, 1, 1)

CS221 8

• Suppose we have a complete assignment (0, 0, 1), perhaps randomly generated. This complete assignment has weight 0.

• Can we make a local change to the assignment to improve the weight? Let’s just try setting x2 to a new value v.

• For each possible value v, we compute the weight of the resulting assignment from setting x2 : v.

• We then just take the v that produces the maximum weight.

• This results in a new assignment (0, 1, 1) with a higher weight (4 rather than 0).

• This is one step of ICM, and one can now take another variable and try to change its value to improve the weight of the complete assignment.

Exploiting locality

X1 X2 X3

t1

o1

t2

o2 o3

Weight of new assignment (x1, v, x3):

o1(x1)t1(x1, v)o2(v)t2(v, x3)o3(x3)

Key idea: locality

When evaluating possible re-assignments to Xi, only need to consider the factors that
depend on Xi.

CS221 10

• There is one optimization we can make. If we write down the weight of a new assignment x ∪ {X2 : v}, we will notice that all the factors
return the same value as before except the ones that depend on X2.

• Therefore, we only need to compute the product of these relevant factors and take the maximum weight. Because we only need to look at
the factors that touch the variable we’re modifying, this can be a big saving if the total number of factors is much larger.

Iterated conditional modes (ICM)

Algorithm: iterated conditional modes (ICM)

Initialize x to a random complete assignment

Loop through i = 1, . . . , n until convergence:

Compute weight of xv = x ∪ {Xi : v} for each v

x← xv with highest weight

X1 X2 X3

t1

o1

t2

o2 o3

X1 X2 X3

t1

o1

t2

o2 o3

X1 X2 X3

t1

o1

t2

o2 o3

[demo: iteratedConditionalModes()]

CS221 12

• Now we can state our first algorithm, ICM. The idea is simple: we start with a random complete assignment. We repeatedly loop through all
the variables Xi.
• On variable Xi, we consider all possible ways of re-assigning it Xi : v for v ∈ Domaini, and choose the new assignment that has the highest

weight.
• Graphically, we represent each step of the algorithm by having shaded nodes for the variables which are fixed and unshaded for the single

variable which is being re-assigned.

• Note that in the demo, ICM gets stuck in a local optimum with weight 4 rather than the global optimal weight of 8.

Convergence properties

• Weight(x) increases or stays the same each iteration

• Converges in a finite number of iterations

• Can get stuck in local optima

• Not guaranteed to find optimal assignment!

CS221 14

• Note that each step of ICM cannot decrease the weight because we can always stick with the old assignment.

• ICM terminates when we stop increasing the weight, which will happen eventually since there are a finite number of assignments and therefore
possible weights we can increase to.

• However, ICM can get stuck in local optima, where there is a assignment with larger weight elsewhere, but no one-variable change increases
the weight.

• Connection: this hill-climbing is called coordinate-wise ascent. We already saw an instance of coordinate-wise ascent in the K-means algorithm
which would alternate between fixing the centroids and optimizing the object with respect to the cluster assignments, and fixing the cluster
assignments and optimizing the centroids. Recall that K-means also suffered from local optima issues.

• There are two ways to mitigate local optima. One is to change multiple variables at once. Another is to inject randomness, which we’ll see
later with Gibbs sampling.

Summary

X1 X2 X3

t1

o1

t2

o2 o3

Algorithm Strategy Optimality Time complexity

Backtracking search extend partial assignments exact exponential

Beam search extend partial assignments approximate linear

Local search (ICM) modify complete assignments approximate linear

CS221 16

• This concludes our presentation of a local search algorithm, Iterated Conditional Modes (ICM).

• Let us summarize all the search algorithms for finding maximum weight assignment CSPs that we have encountered.

• Backtracking search starts with an empty assignment and incrementally build up partial assignments. It produces exact (optimal) solutions
and requires exponential time (although heuristics such as dynamic ordering and AC-3 help).

• Beam search also extends partial assignments. It takes linear time in the number of variables, but yields approximate solutions.

• In this module, we’ve considered an alternative strategy, local search, which works directly with complete assignments and tries to improve
them one variable at a time. If we always choose the value that maximizes the weight, we get ICM, which has the same characteristics as
beam search: approximate but fast.

