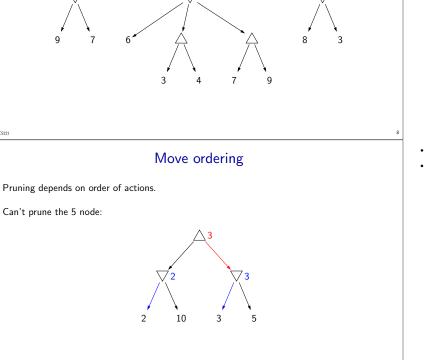


- In general, let's think about the minimax values in the game tree. The value of a node is equal to the utility of at least one of its leaf nodes (because all the values are just propagated from the leaves with min and max applied to them). Call the first path (ordering by children left-to-right) that leads to the first such leaf node the **optimal path**. An important observation is that the values of all nodes on the optimal
- lett-to-right that leads to the first such leaf node the **optimal part**. An important observation is that the values of an nodes on the optimal path are the same (equal to the minimax value of the root). Since we are interested in computing the value of the root node, if we can certify that a node is not on the optimal path, then we can prune it and its subtree. To do this, during the depth-first exhaustive search of the game tree, we think about maintaining a lower bound ($\geq a_s$) for all the max nodes *s* and an upper bound ($\geq b_s$) for all the min nodes *s*. If the interval of the current node does not non-trivially overlap the interval of every one of its ancestors, then we can prune the current node.
- If the interval of the current node does not non-trivially overlap the interval of every one of its ancestors, then we can prune the current node. In the example, we've determined the root's node must be ≥ 6 . Once we get to the node on at ply 4 and determine that node is ≤ 5 , we can prune the rest of its children since it is impossible that this node will be on the optimal path (≤ 5 and ≥ 6 are incompatible). Remember that all the nodes on the optimal path have the same value. Independentiation note: for each max node s, rather than keeping a_s , we keep α_s , which is the maximum value of $a_{s'}$ over s and all its max node ancestors. Similarly, for each min node s, rather than keeping b_s , we keep β_s , which is the minimum value of $b_{s'}$ over s and all its min node ancestors. That way, at any given node, we can check interval overlap in constant time regardless of how deep we are in the tree.



- We have so far shown that alpha-beta pruning correctly computes the minimax value at the root, and seems to save some work by pruning
- The name is that it depends on the order in which we explore the children. This simple example shows that with one ordering, we can prune the final leaf, but in the second, we can't.

Move ordering

Which ordering to choose?

CS221

- Worst ordering: $O(b^{2 \cdot d})$ time
- Best ordering: $O(b^{2 \cdot 0.5d})$ time
- Random ordering: $O(b^{2 \cdot 0.75d})$ time when b = 2
- Random ordering: $O((\frac{b-1+\sqrt{b^2+14b+1}}{4})^{2 \cdot d})$ for general b
- In practice, can use evaluation function Eval(s):
 - Max nodes: order successors by decreasing $\mathsf{Eval}(s)$
 - Min nodes: order successors by increasing $\mathsf{Eval}(s)$

12

- In the worst case, we don't get any savings.
 If we use the best possible ordering, then we save half the exponent, which is significant. This means that if could search to depth 10 before, we can now search to depth 20, which is truly remarkable given that the time increases exponentially with the depth.
 In practice, of course we don't know the best ordering. But interestingly, if we just use a random ordering, that allows us to search 33 percent deeper.
 We could also use a heuristic ordering based on a simple evaluation function. Intuitively, we want to search children that are going to give us the largest lower bound for max nodes and the smallest upper bound for min nodes.