
Games: evaluation functions





Computation

-50 50

-50

1 3

1

-5 15

-5

1

Approach: tree search

Complexity:

• branching factor b, depth d (2d plies)

• O(d) space, O(b2d) time

Chess: b u 35, d u 50
25515520672986852924121150151425587630190414488161019324176778440771467258239937365843732987043555789782336195637736653285543297897675074636936187744140625

CS221 2



• Thus far, we’ve only touched on the modeling part of games. The rest of the lecture will be about how to actually compute (or approximately
compute) the values of games.

• The first thing to note is that we cannot avoid exhaustive search of the game tree in general. Recall that a state is a summary of the past
actions which is sufficient to act optimally in the future. In most games, the future depends on the exact position of all the pieces, so we
cannot forget much and exploit dynamic programming.

• Second, game trees can be enormous. Chess has a branching factor of around 35 and go has a branching factor of up to 361 (the number of
moves to a player on his/her turn). Games also can last a long time, and therefore have a depth of up to 100.

• A note about terminology specific to games: A game tree of depth d corresponds to a tree where each player has moved d times. Each level
in the tree is called a ply. The number of plies is the depth times the number of players.



Speeding up minimax

• Evaluation functions: use domain-specific knowledge, compute approximate answer

• Alpha-beta pruning: general-purpose, compute exact answer

CS221 4



• The rest of the lecture will be about how to speed up the basic minimax search using two ideas: evaluation functions and alpha-beta pruning.



Depth-limited search

Limited depth tree search (stop at maximum depth dmax):

Vminmax(s, d) =


Utility(s) IsEnd(s)

Eval(s) d = 0

maxa∈Actions(s) Vminmax(Succ(s, a), d) Player(s) = agent

mina∈Actions(s) Vminmax(Succ(s, a), d− 1) Player(s) = opp

Use: at state s, call Vminmax(s, dmax)

Convention: decrement depth at last player’s turn

CS221 6





Evaluation functions

Definition: Evaluation function

An evaluation function Eval(s) is a (possibly very weak) estimate of the value
Vminmax(s).

Analogy: FutureCost(s) in search problems

CS221 8



• The first idea on how to speed up minimax is to search only the tip of the game tree, that is down to depth dmax, which is much smaller than
the total depth of the tree D (for example, dmax might be 4 and D = 50).

• We modify our minimax recurrence from before by adding an argument d, which is the maximum depth that we are willing to descend from
state s. If d = 0, then we don’t do any more search, but fall back to an evaluation function Eval(s), which is supposed to approximate the
value of Vminmax(s) (just like the heuristic h(s) approximated FutureCost(s) in A* search).

• If d > 0, we recurse, decrementing the allowable depth by one at only min nodes, not the max nodes. This is because we are keeping track
of the depth rather than the number of plies.



Evaluation functions

Example: chess

Eval(s) = material+mobility+ king-safety+ center-control

material = 10100(K −K ′) + 9(Q−Q′) + 5(R−R′)+

3(B −B′ +N −N ′) + 1(P − P ′)

mobility = 0.1(num-legal-moves− num-legal-moves′)

...

CS221 10



• Now what is this mysterious evaluation function Eval(s) that serves as a substitute for the horrendously hard Vminmax that we can’t compute?

• Just as in A*, there is no free lunch, and we have to use domain knowledge about the game. Let’s take chess for example. While we don’t
know who’s going to win, there are some features of the game that are likely indicators. For example, having more pieces is good (material),
being able to move them is good (mobility), keeping the king safe is good, and being able to control the center of the board is also good.
We can then construct an evaluation function which is a weighted combination of the different properties.

• For example, K−K ′ is the difference in the number of kings that the agent has over the number that the opponent has (losing kings is really
bad since you lose then), Q−Q′ is the difference in queens, R−R′ is the difference in rooks, B −B′ is the difference in bishops, N −N ′ is
the difference in knights, and P − P ′ is the difference in pawns.



Summary: evaluation functions

Depth-limited exhaustive search: O(b2d) time

• Eval(s) attempts to estimate Vminmax(s) using domain knowledge

• No guarantees (unlike A*) on the error from approximation

CS221 12



• To summarize, this section has been about how to make naive exhaustive search over the game tree to compute the minimax value of a game
faster.

• The methods so far have been focused on taking shortcuts: only searching up to depth d and relying on an evaluation function, and using
a cheaper mechanism for estimating the value at a node rather than search its entire subtree.


