
Games: game evaluation

Policies

Deterministic policies: πp(s) ∈ Actions(s)

action that player p takes in state s

Stochastic policies πp(s, a) ∈ [0, 1]:

probability of player p taking action a in state s

[semi-live solution: humanPolicy]

CS221 2

• Following our presentation of MDPs, we revisit the notion of a policy. Instead of having a single policy π, we have a policy πp for each player
p ∈ Players. We require that πp only be defined when it’s p’s turn; that is, for states s such that Player(s) = p.

• It will be convenient to allow policies to be stochastic. In this case, we will use πp(s, a) to denote the probability of player p choosing action
a in state s.

• We can think of an MDP as a game between the agent and nature. The states of the game are all MDP states s and all chance nodes (s, a).
It’s the agent’s turn on the MDP states s, and the agent acts according to πagent. It’s nature’s turn on the chance nodes. Here, the actions
are successor states s′, and nature chooses s′ with probability given by the transition probabilities of the MDP: πnature((s, a), s

′) = T (s, a, s′).

Game evaluation example

Example: game evaluation

πagent(s) = A

πopp(s, a) =
1
2 for a ∈ Actions(s)

-50 50

(0.5) (0.5)

0

1 3

(0.5) (0.5)

2

-5 15

(0.5) (0.5)

5

(1) (0) (0)

0

Veval(sstart) = 0

CS221 4

• Given two policies πagent and πopp, what is the (agent’s) expected utility? That is, if the agent and the opponent were to play their (possibly
stochastic) policies a large number of times, what would be the average utility? Remember, since we are working with zero-sum games, the
opponent’s utility is the negative of the agent’s utility.

• Given the game tree, we can recursively compute the value (expected utility) of each node in the tree. The value of a node is the weighted
average of the values of the children where the weights are given by the probabilities of taking various actions given by the policy at that
node.



Game evaluation recurrence

Analogy: recurrence for policy evaluation in MDPs

πagent πopp πagent ...

Value of the game:

Veval(s) = { Utility(s) IsEnd(s)∑
a∈Actions(s) πagent(s, a)Veval(Succ(s, a)) Player(s) = agent∑
a∈Actions(s) πopp(s, a)Veval(Succ(s, a)) Player(s) = opp

CS221 6

• More generally, we can write down a recurrence for Veval(s), which is the value (expected utility) of the game at state s.

• There are three cases: If the game is over (IsEnd(s)), then the value is just the utility Utility(s). If it’s the agent’s turn, then we compute
the expectation over the value of the successor resulting from the agent choosing an action according to πagent(s, a). If it’s the opponent’s
turn, we compute the expectation with respect to πopp instead.


