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• Game trees: model opponents, randomness

• Minimax: find optimal policy against an adversary

• Evaluation functions: domain-specific, approximate

• Alpha-beta pruning: domain-general, exact

CS221 2

Review: minimax

agent (max) versus opponent (min)
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• Recall that the central object of study is the game tree. Game play starts at the root (starting state) and descends to a leaf (end state),
where at each node s (state), the player whose turn it is (Player(s)) chooses an action a ∈ Actions(s), which leads to one of the children
Succ(s, a).

• The minimax principle provides one way for the agent (your computer program) to compute a pair of minimax policies for both the agent
and the opponent (π∗

agent, π
∗
opp).

• For each node s, we have the minimax value of the game Vminmax(s), representing the expected utility if both the agent and the opponent
play optimally. Each node where it’s the agent’s turn is a max node (right-side up triangle), and its value is the maximum over the children’s
values. Each node where it’s the opponent’s turn is a min node (upside-down triangle), and its value is the minimum over the children’s
values.

• Important properties of the minimax policies: The agent can only decrease the game value (do worse) by changing his/her strategy, and the
opponent can only increase the game value (do worse) by changing his/her strategy.



Review: depth-limited search

Vminmax(s, d) =


Utility(s) IsEnd(s)

Eval(s) d = 0

maxa∈Actions(s) Vminmax(Succ(s, a), d) Player(s) = agent

mina∈Actions(s) Vminmax(Succ(s, a), d− 1) Player(s) = opp

Use: at state s, choose action resulting in Vminmax(s, dmax)
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• In order to approximately compute the minimax value, we used a depth-limited search, where we compute Vminmax(s, dmax), the approximate
value of s if we are only allowed to search to at most depth dmax.

• Each time we hit d = 0, we invoke an evaluation function Eval(s), which provides a fast reflex way to assess the value of the game at state s.

Summary

• Main challenge: not just one objective

• Minimax principle: guard against adversary in turn-based games

• Simultaneous non-zero-sum games: mixed strategies, Nash equilibria

• Strategy: search game tree + learned evaluation function
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• Games are an extraordinary rich topic of study, and we have only seen the tip of the iceberg. Beyond simultaneous non-zero-sum games,
which are already complex, there are also games involving partial information (e.g., poker).

• But even if we just focus on two-player zero-sum games, things are quite interesting. To build a good game-playing agent involves integrating
the two main thrusts of AI: search and learning, which are really symbiotic. We can’t possibly search an exponentially large number of possible
futures, which means we fall back to an evaluation function. But in order to learn an evaluation function, we need to search over enough
possible futures to build an accurate model of the likely outcome of the game.

Chess

1997: IBM’s Deep Blue defeated world champion Gary Kasparov

Fast computers:

• Alpha-beta search over 30 billion positions, depth 14

• Singular extensions up to depth 20

Domain knowledge:

• Evaluation function: 8000 features

• 4000 ”opening book” moves, all endgames with 5 pieces

• 700,000 grandmaster games

• Null move heuristic: opponent gets to move twice
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Checkers

1990: Jonathan Schaeffer’s Chinook defeated human champion; ran on standard PC

Closure:

• 2007: Checkers solved in the minimax sense (outcome is draw), but doesn’t mean you
can’t win

• Alpha-beta search + 39 trillion endgame positions
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Backgammon and Go

Alpha-beta search isn’t enough...

Challenge: large branching factor

• Backgammon: randomness from dice (can’t prune!)

• Go: large board size (361 positions)

Solution: learning
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• For games such as checkers and chess with a manageable branching factor, one can rely heavily on minimax search along with alpha-beta
pruning and a lot of computation power. A good amount of domain knowledge can be employed as to attain or surpass human-level
performance.

• However, games such as Backgammon and Go require more due to the large branching factor. Backgammon does not intrinsically have a
larger branching factor, but much of this branching is due to the randomness from the dice, which cannot be pruned (it doesn’t make sense
to talk about the most promising dice move).

• As a result, programs for these games have relied a lot on TD learning to produce good evaluation functions without searching the entire
space.

AlphaGo

• Supervised learning: on human games

• Reinforcement learning: on self-play games

• Evaluation function: convolutional neural network (value network)

• Policy: convolutional neural network (policy network)

• Monte Carlo Tree Search: search / lookahead
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• The most recent visible advance in game playing was March 2016, when Google DeepMind’s AlphaGo program defeated Le Sedol, one of the
best professional Go players 4-1.

• AlphaGo took the best ideas from game playing and machine learning. DeepMind executed these ideas well with lots of computational
resources, but these ideas should already be familiar to you.

• The learning algorithm consisted of two phases: a supervised learning phase, where a policy was trained on games played by humans (30
million positions) from the KGS Go server; and a reinforcement learning phase, where the algorithm played itself in attempt to improve, similar
to what we say with Backgammon.

• The model consists of two pieces: a value network, which is used to evaluate board positions (the evaluation function); and a policy network,
which predicts which move to make from any given board position (the policy). Both are based on convolutional neural networks.

• Finally, the policy network is not used directly to select a move, but rather to guide the search over possible moves in an algorithm similar to
Monte Carlo Tree Search.



Coordination games

Hanabi: players need to signal to each other and coordinate in a decentralized fashion to
collaboratively win.

Hide-and-Seek: OpenAI has developed agents with emergent behaviors to play hide and seek.
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Other games

Security games: allocate limited resources to protect a valuable target. Used by TSA security,
Coast Guard, protect wildlife against poachers, etc.
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• The techniques that we’ve developed for game playing go far beyond recreational uses. Whenever there are multiple parties involved with
conflicting interests, game theory can be employed to model the situation.

• For example, in a security game a defender needs to protect a valuable target from a malicious attacker. Game theory can be used to model
these scenarios and devise optimal (randomized) strategies. Some of these techniques are used by TSA security at airports, to schedule patrol
routes by the Coast Guard, and even to protect wildlife from poachers.

Other games

Resource allocation: users share a resource (e.g., network bandwidth); selfish interests leads to
volunteer’s dilemma

Language: people have speaking and listening strategies, mostly collaborative, applied to dialog
systems
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• For example, in resource allocation, we might have n people wanting to access some Internet resource. If all of them access the resource,
then all of them suffer because of congestion. Suppose that if n− 1 connect, then those people can access the resource and are happy, but
the one person left out suffers. Who should volunteer to step out (this is the volunteer’s dilemma)?

• Another interesting application is modeling communication. There are two players, the speaker and the listener, and the speaker’s actions are
to choose what words to use to convey a message. Usually, it’s a collaborative game where utility is high when communication is successful
and efficient. These game-theoretic techniques have been applied to building dialog systems.



Course plan

Reflex

Search problems

Markov decision processes

Adversarial games

States

Constraint satisfaction problems

Markov networks

Bayesian networks

Variables Logic

Low-level High-level

Machine learning
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State-based models

[Modeling]

Framework search problems MDPs/games

Objective minimum cost paths maximum value policies

[Inference]

Tree-based backtracking minimax/expectimax

Graph-based DP, UCS, A* value/policy iteration

[Learning]

Methods structured Perceptron Q-learning, TD learning

CS221 26

• Modeling: In the context of state-based models, we seek to find minimum cost paths (for search problems) or maximum value policies (for
MDPs and games).

• Inference: To compute these solutions, we can either work on the search/game tree or on the state graph. In the former case, we end up
with recursive procedures which take exponential time but require very little memory (generally linear in the size of the solution). In the latter
case, where we are fortunate to have few enough states to fit into memory, we can work directly on the graph, which can often yield an
exponential savings in time.

• Given that we can find the optimal solution with respect to a fixed model, the final question is where this model actually comes from. Learning
provides the answer: from data. You should think of machine learning as not just a way to do binary classification, but more as a way of life,
which can be used to support a variety of different models.

• In the rest of the course, modeling, inference, and learning will continue to be the three pillars of all techniques we will develop.

State-based models: takeaway 1
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Key idea: specify locally, optimize globally

Modeling: specifies local interactions

Inference: find globally optimal solutions
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• One high-level takeaway is the motto: specify locally, optimize globally. When we’re building a search problem, we only need to specify how
the states are connected through actions and what the local action costs are; we need not specify the long-term consequences of taking an
action. It is the job of the inference to take all of this local information into account and produce globally optimal solutions (minimum cost
paths).

• This separation is quite powerful in light of modeling and inference: having to worry only about local interactions makes modeling easier, but
we still get the benefits of a globally optimal solution via inference which are constructed independent of the domain-specific details.

• We will see this local specification + global optimization pattern again in the context of variable-based models.



State-based models: takeaway 2
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Key idea: state

A state is a summary of all the past actions sufficient to choose future actions opti-
mally.

Mindset: move through states (nodes) via actions (edges)
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• The second high-level takeaway which is core to state-based models is the notion of state. The state, which summarizes previous actions, is
one of the key tools that allows us to manage the exponential search problems frequently encountered in AI.


