Logic: resolution	
Resolution	 To go beyond Horn clauses, we will develop a single resolution rule which is sound and complete. The high-level strategy is the same as propositional logic: convert to CNF and apply resolution.
Recall: First-order logic includes non-Horn clauses	
$\forall x \operatorname{Student}(x) \to \exists y \operatorname{Knows}(x,y)$	
High-level strategy (same as in propositional logic):	
Convert all formulas to CNF	
Repeatedly apply resolution rule	
521 2	
Conversion to CNF	 Consider the logical formula corresponding to Everyone who loves all animals is loved by someone. The slide shows the desired output, which looks like a CNF formula in propositional logic, but there are two differences: there are variables (e.g., x) and functions of variables (e.g., Y(x)). The variables are assumed to be universally quantified over, and the functions are called Skolem functions and stand for a property of the variable.
Input:	
$\forall x (\forall y Animal(y) \to Loves(x,y)) \to \exists y Loves(y,x)$	
Output:	
$(Animal(Y(x)) \lor Loves(Z(x), x)) \land (\neg Loves(x, Y(x)) \lor Loves(Z(x), x))$	
New to first-order logic:	
• All variables (e.g., x) have universal quantifiers by default	
• Introduce Skolem functions (e.g., $Y(x)$) to represent existential quantified variables	
5221 4	

Conversion to CNF (part 1)

Anyone who likes all animals is liked by someone.

Input:

 $\forall x \, (\forall y \, \mathsf{Animal}(y) \to \mathsf{Loves}(x, y)) \to \exists y \, \mathsf{Loves}(y, x)$

Eliminate implications (old):

 $\forall x \neg (\forall y \neg \mathsf{Animal}(y) \lor \mathsf{Loves}(x, y)) \lor \exists y \, \mathsf{Loves}(y, x)$

Push \neg inwards, eliminate double negation (old):

 $\forall x (\exists y \operatorname{Animal}(y) \land \neg \operatorname{Loves}(x, y)) \lor \exists y \operatorname{Loves}(y, x)$

Standardize variables (new):

 $\forall x (\exists y \operatorname{Animal}(y) \land \neg \operatorname{Loves}(x, y)) \lor \exists z \operatorname{Loves}(z, x)$

Conversion to CNF (part 2)

 $\forall x \left(\exists y \operatorname{\mathsf{Animal}}(y) \land \neg \operatorname{\mathsf{Loves}}(x, y) \right) \lor \exists z \operatorname{\mathsf{Loves}}(z, x)$

Replace existentially quantified variables with Skolem functions (new):

 $\forall x \left[\mathsf{Animal}(Y(x)) \land \neg \mathsf{Loves}(x, Y(x))\right] \lor \mathsf{Loves}(Z(x), x)$

Distribute \lor over \land (old):

cs22

 $\forall x \left[\mathsf{Animal}(Y(x)) \lor \mathsf{Loves}(Z(x), x)\right] \land \left[\neg\mathsf{Loves}(x, Y(x)) \lor \mathsf{Loves}(Z(x), x)\right]$

Remove universal quantifiers (new):

 $[\mathsf{Animal}(Y(x)) \lor \mathsf{Loves}(Z(x), x)] \land [\neg \mathsf{Loves}(x, Y(x)) \lor \mathsf{Loves}(Z(x), x)]$

Resolution

Definition: resolution rule (first-order logic) -

 $f_1 \lor \cdots \lor f_n \lor p, \quad \neg q \lor g_1 \lor \cdots \lor g_m$ $\mathsf{Subst}[\theta, f_1 \lor \cdots \lor f_n \lor g_1 \lor \cdots \lor g_m]$ where $\theta = \text{Unify}[p, q]$.

Example: resolution –

 $\mathsf{Animal}(Y(x)) \lor \mathsf{Loves}(Z(x), x), \quad \neg \mathsf{Loves}(u, v) \lor \mathsf{Feeds}(u, v)$ $Animal(Y(x)) \lor Feeds(Z(x), x)$ Substitution: $\theta = \{u/Z(x), v/x\}.$

- We start by eliminating implications, pushing negation inside, and eliminating double negation, which is all old.
- The first thing new to first-order logic is standardization of variables. Note that in $\exists x P(x) \land \exists x Q(x)$, there are two instances of x whose scopes don't overlap. To make this clearer, we will convert this into $\exists x P(x) \land \exists y Q(y)$. This sets the stage for when we will drop the quantifiers on the variables

- The next step is to remove existential variables by replacing them with Skolem functions. This is perhaps the most non-trivial part of the process. Consider the formula: $\forall x \exists y P(x, y)$. Here, y is existentially quantified and depends on x. So we can mark this dependence explicitly by setting y = Y(x). Then the formula becomes $\forall x P(x, Y(x))$. You can even think of the function Y as being existentially quantified over outside the $\forall x$.

10

- · Finally, we simply drop all universal quantifiers. Because those are the only quantifiers left, there is no ambiguity.
- The final CNF formula can be difficult to interpret, but we can be assured that the final formula captures exactly the same information as the original formula

• After convering all formulas to CNF, then we can apply the resolution rule, which is generalized to first-order logic. This means that instead of doing exact matching of a literal p, we unify atomic formulas p and q, and then apply the resulting substitution θ on the conclu