
Logic: overview

Question

If X1 +X2 = 10 and X1 −X2 = 4, what is X1?

answer in chat

CS221 2

• Think about how you solved this problem. You could treat it as a CSP with variables X1 and X2, and search through the set of candidate
solutions, checking the constraints.

• However, more likely, you just added the two equations, divided both sides by 2 to easily find out that X1 = 7. This is the power of logical
inference, where we apply a set of truth-preserving rules to arrive at the answer. This is in contrast to what is called model checking (for
reasons that will become clear), which tries to directly find assignments.

• We’ll see that logical inference allows you to perform very powerful manipulations in a very compact way. This allows us to vastly increase
the representational power of our models.

Course plan

Reflex

Search problems

Markov decision processes

Adversarial games

States

Constraint satisfaction problems

Markov networks

Bayesian networks

Variables Logic

Low-level High-level

Machine learning

CS221 4

• We are at the last stage of our journey through the AI topics of this course: logic. Before launching in, let’s take a moment to reflect.

Taking a step back

data Learning model

question

Inference

answer

Examples: search problems, MDPs, games, CSPs, Bayesian networks

CS221 6

• For each topic (e.g., MDPs) that we’ve studied, we followed the modeling-inference-learning paradigm: We take some data, feed it into a
learning algorithm to produce a model with tuned parameters. Then we take this model and use it to perform inference (turning questions
into answers).

• For search problems, the question is ”what is the minimum cost path?” Inference algorithms such as DFS, UCS or A* produced the minimum
cost path. Learning algorithms such as the structured Perceptron filled in the action costs based on data (minimum cost paths).

• For MDPs and games, the question is ”what is the maximum value policy?” Inference algorithms such as value iteration or minimax produced
this. Learning algorithms such as Q-learning or TD learning allow you to work when we don’t know the transitions and rewards.

• For CSPs, the question is ”what is the maximum weight assignment?” Inference algorithms such as backtracking search, beam search, or
variable elimination find such an assignment. We did not discuss learning algorithms here, but something similar to the structured Perceptron
works.

• For Bayesian networks, the question is ”what is the probability of a query given evidence?” Inference algorithms such as Gibbs sampling and
particle filtering compute these probabilistic inference queries. Learning: if we don’t know the local conditional distributions, we can learn
them using maximum likelihood.

• We can think of learning as induction, where we need to generalize, and inference as deduction, where it’s about computing the best predicted
answer under the model.

Modeling paradigms

State-based models: search problems, MDPs, games

Applications: route finding, game playing, etc.

Think in terms of states, actions, and costs

Variable-based models: CSPs, Bayesian networks

Applications: scheduling, tracking, medical diagnosis, etc.

Think in terms of variables and factors

Logic-based models: propositional logic, first-order logic

Applications: theorem proving, verification, reasoning

Think in terms of logical formulas and inference rules

CS221 8

• Each topic corresponded to a modeling paradigm. The way the modeling paradigm is set up influences the way we approach a problem.

• In state-based models, we thought about inference as finding minimum cost paths in a graph. This leads us to think in terms of states,
actions, and costs.

• In variable-based models, we thought about inference as finding maximum weight assignments or computing conditional probabilities. There
we thought about variables and factors.

• Now, we will talk about logic-based models, where inference is applying a set of rules. For these models, we will think in terms of logical
formulas and inference rules.

A historical note

• Logic was dominant paradigm in AI before 1990s

• Problem 1: deterministic, didn’t handle uncertainty (probability addresses this)

• Problem 2: rule-based, didn’t allow fine tuning from data (machine learning addresses
this)

• Strength: provides expressiveness in a compact way

CS221 10

• Historically, in AI, logic was the dominant paradigm before the 1990s, but this tradition fell out of favor with the rise of probability and
machine learning.

• There were two reasons for this: First, logic as an inference mechanism was brittle and did not handle uncertainty, whereas probability offered
a coherent framework for dealing with uncertainty.

• Second, people built rule-based systems which were tedious and did not scale up, whereas machine learning automated much of the fine-tuning
of a system by using data.

• However, there is one strength of logic which has not quite yet been recouped by existing probability and machine learning methods, and that
is the expressivity of the model.

Motivation: smart personal assistant

CS221 12

• How can we motivate logic-based models? We will take a little bit of a detour and think about an AI grand challenge: building smart personal
assistants.

• Today, we have systems like Apple’s Siri, Microsoft’s Cortana, Amazon’s Alexa, and Google Assistant.

Motivation: smart personal assistant

Tell information Ask questions

Use natural language!

[demo: python nli.py]

Need to:

• Digest heterogenous information

• Reason deeply with that information

CS221 14

• We would like to have more intelligent assistants such as Data from Star Trek. What is the functionality that’s missing in between?

• At an abstract level, one fundamental thing a good personal assistant should be able to do is to take in information from people and be able
to answer questions that require drawing inferences from the facts.

• In some sense, telling the system information is like machine learning, but it feels like a very different form of learning than seeing 10M images
and their labels or 10M sentences and their translations. The type of information we get here is both more heterogenous, more abstract, and
the expectation is that we process it more deeply (we don’t want to have to tell our personal assistant 100 times that we prefer morning
meetings).

• And how do we interact with our personal assistants? Let’s use natural language, the very tool that was built for communication!

Natural language

Example:

• A dime is better than a nickel.

• A nickel is better than a penny.

• Therefore, a dime is better than a penny.

Example:

• A penny is better than nothing.

• Nothing is better than world peace.

• Therefore, a penny is better than world peace???

Natural language is slippery...

CS221 16

• But natural language is tricky, because it is replete with ambiguities and vagueness. And drawing inferences using natural languages can be
quite slippery. Of course, some concepts are genuinely vague and slippery, and natural language is as good as it gets, but that still leaves
open the question of how a computer would handle those cases.

Language

Language is a mechanism for expression.

Natural languages (informal):

English: Two divides even numbers.

German: Zwei dividieren geraden zahlen.

Programming languages (formal):

Python: def even(x): return x % 2 == 0

C++: bool even(int x) { return x % 2 == 0; }

Logical languages (formal):

First-order-logic: ∀x.Even(x) → Divides(x, 2)

CS221 18

• Let’s think about language a bit deeply. What does it really buy you? Primarily, language is this wonderful human creation that allows us to
express and communicate complex ideas and thoughts.

• We have mostly been talking about natural languages such as English and German. But as you all know, there are programming languages
as well, which allow one to express computation formally so that a computer can understand it.

• This lecture is mostly about logical languages such as propositional logic and first-order logic. These are formal languages, but are a more
suitable way of capturing declarative knowledge rather than concrete procedures, and are better connected with natural language.

Two goals of a logic language

• Represent knowledge about the world

• Reason with that knowledge

CS221 20

• Some of you already know about logic, but it’s important to keep the AI goal in mind: We want to use it to represent knowledge, and we
want to be able to reason (or do inference) with that knowledge.

• Finally, we need to keep in mind that our goal is to get computers to use logic automatically, not for you to do it. This means that we need
to think very mechanistically.

Ingredients of a logic

Syntax: defines a set of valid formulas (Formulas)

Example: Rain ∧ Wet

Semantics: for each formula, specify a set of models (assignments / configurations of the
world)

Example:
0 1

0

1

Wet

R
ai

n

Inference rules: given f , what new formulas g can be added that are guaranteed to follow
(f
g)?

Example: from Rain ∧ Wet, derive Rain

CS221 22

• The syntax defines a set of valid formulas, which are things which are grammatical to say in the language.

• Semantics usually doesn’t receive much attention if you have a casual exposure to logic, but this is really the important piece that makes
logic rigorous. Formally, semantics specifies the meaning of a formula, which in our setting is a set of configurations of the world in which
the formula holds. This is what we care about in the end.

• But in order to get there, it’s helpful to operate directly on the syntax using a set of inference rules. For example, if I tell you that it’s
raining and wet, then you should be able to conclude that it is also raining (obviously) without even explicitly mentioning semantics. Most
of the time when people do logic casually, they are really just applying inference rules.

Syntax versus semantics

Syntax: what are valid expressions in the language?

Semantics: what do these expressions mean?

Different syntax, same semantics (5):

2 + 3 ⇔ 3 + 2

Same syntax, different semantics (1 versus 1.5):

3 / 2 (Python 2.7) 6⇔ 3 / 2 (Python 3)

CS221 24

• Just to hammer in the point that syntax and semantics are different, consider two examples from programming languages.

• First, the formula 2 + 3 and 3 + 2 are superficially different (a syntactic notion), but they have the same semantics (5).

• Second, the formula 3 / 2 means something different depending on which language. In Python 2.7, the semantics is 1 (integer division),
and in Python 3 the semantics is 1.5 (floating point division).

Propositional logic

Syntax Semantics

formula

Inference

rules

models

CS221 26

Logics

• Propositional logic with only Horn clauses

• Propositional logic

• Modal logic

• First-order logic with only Horn clauses

• First-order logic

• Second-order logic

• ...

Key idea: tradeoff

Balance expressivity and computational efficiency.

CS221 28

• There are many different logical languages, just like there are programming languages. Whereas most programming languages have the
expressive power (all Turing complete), logical languages exhibit a larger spectrum of expressivity.

• The bolded items are the ones we will discuss in this class.

Roadmap

Modeling

Propositional Logic Syntax

Propositional Logic Semantics

First-order Logic

Inference

Inference Rules

Propositional modus ponens

Propositional resolution

First-order modus ponens

First-order resolution

CS221 30

• Here are the rest of the modules under the logic unit.

• We will start by talking about the core elemenst of logics: syntax, semantics, and inference rules. We will start by defining syntax and
semantics for propositional logic.

• We will then discuss a set of inference rules for propostional logic including modus ponens and resolution. We will discuss soundness and
correctness of these inference algorithms.

• We then describe a more expressive logic, i.e., first order logic. We will go over its syntax and semantics, and then extend the notions of
modus ponens and resolution to first order logic using unification and substitution.

