
Logic: resolution

Review: tradeoffs

Formulas allowed Inference rule Complete?

Propositional logic modus ponens no

Propositional logic (only Horn clauses) modus ponens yes

Propositional logic resolution yes

CS221 2

• We saw that if our logical language was restricted to Horn clauses, then modus ponens alone was sufficient for completeness. For general
propositional logic, modus ponens is insufficient.

• In this lecture, we’ll see that a more powerful inference rule, resolution, is complete for all of propositional logic.

Horn clauses and disjunction

Written with implication Written with disjunction

A → C ¬A ∨ C

A ∧B → C ¬A ∨ ¬B ∨ C

• Literal: either p or ¬p, where p is a propositional symbol

• Clause: disjunction of literals

• Horn clauses: at most one positive literal

Modus ponens (rewritten):

A, ¬A∨C
C

• Intuition: cancel out A and ¬A

CS221 4

• Modus ponens can only deal with Horn clauses, so let’s see why Horn clauses are limiting. We can equivalently write implication using
negation and disjunction. Then it’s clear that Horn clauses are just disjunctions of literals where there is at most one positive literal and zero
or more negative literals. The negative literals correspond to the propositional symbols on the left side of the implication, and the positive
literal corresponds to the propositional symbol on the right side of the implication.

• If we rewrite modus ponens, we can see a ”canceling out” intuition emerging. To make the intuition a bit more explicit, remember that, to
respect soundness, we require {A,¬A ∨ C} |= C; this is equivalent to: if A ∧ (¬A ∨ C) is true, then C is also true. This is clearly the case.

• But modus ponens cannot operate on general clauses.



Resolution [Robinson, 1965]

General clauses have any number of literals:

¬A ∨B ∨ ¬C ∨D ∨ ¬E ∨ F

Example: resolution inference rule

Rain ∨ Snow, ¬Snow ∨ Traffic

Rain ∨ Traffic

Definition: resolution inference rule

f1 ∨ · · · ∨ fn ∨ p, ¬p ∨ g1 ∨ · · · ∨ gm
f1 ∨ · · · ∨ fn ∨ g1 ∨ · · · ∨ gm

CS221 6

• Let’s try to generalize modus ponens by allowing it to work on general clauses. This generalized inference rule is called resolution, which was
invented in 1965 by John Alan Robinson.

• The idea behind resolution is that it takes two general clauses, where one of them has some propositional symbol p and the other clause has
its negation ¬p, and simply takes the disjunction of the two clauses with p and ¬p removed. Here, f1, . . . , fn, g1, . . . , gm are arbitrary literals.

Soundness of resolution

Rain ∨ Snow, ¬Snow ∨ Traffic

Rain ∨ Traffic
(resolution rule)

M(Rain ∨ Snow) ∩ M(¬Snow ∨ Traffic) ⊆? M(Rain ∨ Traffic)

0 1

0,0

0,1

1,0

1,1

Snow

R
ai

n
,T

ra
ffi

c

0 1

0,0

0,1

1,0

1,1

Snow

R
ai

n
,T

ra
ffi

c

0 1

0,0

0,1

1,0

1,1

Snow

R
ai

n
,T

ra
ffi

c

Sound!

CS221 8

• Why is resolution logically sound? We can verify the soundness of resolution by checking its semantic interpretation. Indeed, the intersection
of the models of f and g is a subset of models of f ∨ g.

Conjunctive normal form

So far: resolution only works on clauses...but that’s enough!

Definition: conjunctive normal form (CNF)

A CNF formula is a conjunction of clauses.

Example: (A ∨B ∨ ¬C) ∧ (¬B ∨D)

Equivalent: knowledge base where each formula is a clause

Proposition: conversion to CNF

Every formula f in propositional logic can be converted into an equivalent CNF formula
f ′:

M(f) = M(f ′)

CS221 10

• But so far, we’ve only considered clauses, which are disjunctions of literals. Surely this can’t be all of propositional logic... But it turns out it
actually is in the following sense.

• A conjunction of clauses is called a CNF formula, and every formula in propositional logic can be converted into an equivalent CNF. Given a
CNF formula, we can toss each of its clauses into the knowledge base.

• But why can every formula be put in CNF?



Conversion to CNF: example

Initial formula:

(Summer → Snow) → Bizzare

Remove implication (→):

¬(¬Summer ∨ Snow) ∨ Bizzare

Push negation (¬ ) inwards (de Morgan):

(¬¬Summer ∧ ¬Snow) ∨ Bizzare

Remove double negation:

(Summer ∧ ¬Snow) ∨ Bizzare

Distribute ∨ over ∧:

(Summer ∨ Bizzare) ∧ (¬Snow ∨ Bizzare)
CS221 12

• The answer is by construction. There is a six-step procedure that takes any propositional formula and turns it into CNF. Here is an example
of how it works (only four of the six steps apply here).

Conversion to CNF: general

Conversion rules:

• Eliminate ↔: f↔g
(f→g)∧(g→f)

• Eliminate →: f→g
¬f∨g

• Move ¬ inwards: ¬(f∧g)
¬f∨¬g

• Move ¬ inwards: ¬(f∨g)
¬f∧¬g

• Eliminate double negation: ¬¬f
f

• Distribute ∨ over ∧: f∨(g∧h)
(f∨g)∧(f∨h)

CS221 14

• Here are the general rules that convert any formula to CNF. First, we try to reduce everything to negation, conjunction, and disjunction.

• Next, we try to push negation inwards so that they sit on the propositional symbols (forming literals). Note that when negation gets pushed
inside, it flips conjunction to disjunction, and vice-versa.

• Finally, we distribute so that the conjunctions are on the outside, and the disjunctions are on the inside.

• Note that each of these operations preserves the semantics of the logical form (remember there are many formula that map to the same set
of models). This is in contrast with most inference rules, where the conclusion is more general than the conjunction of the premises.

• Also, when we apply a CNF rewrite rule, we replace the old formula with the new one, so there is no blow-up in the number of formulas. This
is in contrast to applying general inference rules. An analogy: conversion to CNF does simplification in the context of full inference, just like
AC-3 does simplification in the context of backtracking search.

Resolution algorithm

Recall: relationship between entailment and contradiction (basically ”proof by contradiction”)

KB |= f KB ∪ {¬f} is unsatisfiable

Algorithm: resolution-based inference

• Add ¬f into KB.

• Convert all formulas into CNF.

• Repeatedly apply resolution rule.

• Return entailment iff derive false.

CS221 16

• After we have converted all the formulas to CNF, we can repeatedly apply the resolution rule. But what is the final target?

• Recall that both testing for entailment and contradiction boil down to checking satisfiability. Resolution can be used to do this very thing. If
we ever apply a resolution rule (e.g., to premises A and ¬A) and we derive false (which represents a contradiction), then the set of formulas
in the knowledge base is unsatisfiable.

• If we are unable to derive false, that means the knowledge base is satisfiable because resolution is complete. However, unlike in model
checking, we don’t actually produce a concrete model that satisfies the KB.



Resolution: example

KB′ = {A → (B ∨ C), A,¬B,¬C}

Convert to CNF:

KB′ = {¬A ∨B ∨ C,A,¬B,¬C}

Repeatedly apply resolution rule:

false

C

B ∨ C

¬A ∨B ∨ C A

¬B

¬C

Conclusion: KB entails f

CS221 18

• Here’s an example of taking a knowledge base, converting it into CNF, and applying resolution. In this case, we derive false, which means
that the original knowledge base was unsatisfiable.

Time complexity

Definition: modus ponens inference rule

p1, · · · , pk, (p1 ∧ · · · ∧ pk)→ q

q

• Each rule application adds clause with one propositional symbol ⇒ linear time

Definition: resolution inference rule

f1 ∨ · · · ∨ fn ∨ p, ¬p ∨ g1 ∨ · · · ∨ gm
f1 ∨ · · · ∨ fn ∨ g1 ∨ · · · ∨ gm

• Each rule application adds clause with many propositional symbols ⇒ exponential time

CS221 20

• There we have it — a sound and complete inference procedure for all of propositional logic (although we didn’t prove completeness). But
what do we have to pay computationally for this increase?

• If we only have to apply modus ponens, each propositional symbol can only get added once, so with the appropriate algorithm (forward
chaining), we can apply all necessary modus ponens rules in linear time.

• But with resolution, we can end up adding clauses with many propositional symbols, and possibly any subset of them! Therefore, this can
take exponential time.

Summary

Horn clauses any clauses

modus ponens resolution

linear time exponential time

less expressive more expressive

CS221 22

• To summarize, we can either content ourselves with the limited expressivity of Horn clauses and obtain an efficient inference procedure (via
modus ponens).

• If we wanted the expressivity of full propositional logic, then we need to use resolution and thus pay more.


