
Machine learning: differentiable programming



• In this module, I’ll briefly introduce the idea of differentiable programming, which runs with the ideas of computation graphs and backpropa-
gation that we developed for simple neural networks.

• There is enough to say here to fill up an entire course, so I will keep things high-level but try to highlight the power of composition.

• Aside: Differentiable programming is closely related to deep learning. I’ve adopted the former term as a more precise way to highlight the
mechanics of writing models as you would write code.



Deep learning models

VGGNet [Simoyan/Zisserman, 2014]

BERT [Devlin+, 2018]
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• If you look around at deep learning today, there are some pretty complex models which have many layers, attention mechanisms, residual
connections, layerwise normalization, to name a few, which might be overwhelming at first glance.

• However, if you look closer, these complex models are actually composed of functions, which themselves are composed of even simpler
functions.

• This is the ”programming” part of differentiable programming, which allows you to build up increasingly more powerful and sophisticated
models without losing track of what’s going on.



Feedforward neural networks
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Performs one step of processing.

score = FeedForward(FeedForward(FeedForward(φ(x)))) = FeedForward3(φ(x))
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• Let’s revisit our familiar example, the three-layer neural network. In this model, we start with the feature vector φ(x) apply some operations
(left-multiply by a matrix, add a bias term) to get the score.

• (Note that we highlight that each of these matrices should be interpreted as a collection of rows.)

• The main differences from before are that we’ve added bias terms and renamed the final weight vector w to V3 for consistency with the other
layers.

• Let us now factor out a function of this model and call it FeedForward. This is a function that takes a fixed-dimensional vector x and
produces another vector (with potentially another dimensionality). This function is implemented by multiplying by a matrix and applying an
activation function (e.g., ReLU).

• Now we can not worry too much about the implementation, and just think of this as performing one step of processing. Compared to normal
programming, this is admittedly vague, because the parameters (e.g., the red quantities) are not specified but rather learned from data. So
differentiable programming requires us to necessarily be a bit loose.

• Using this brand new function, we can rewrite the three-layer neural network as follows. Strictly speaking, when we write FeedForward, we
mean a function that has its own private parameters that need to be set via backpropagation.

• Another simplification is that we are eliding the input and output dimensionality (6 to 4, 4 to 3, and 3 to 1 in this example). These are
hyperparameters which need to be set before learning.



Representing images

x

Problems:

• Matrix is huge (depending on resolution of image)

• Does not capture the spatial structure (locality) of images
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• Now suppose we want to do image classification. We need to have some way of representing images.

• The FeedForward function takes in a vector as input, and we can represent an image as a long vector containing all the pixels (say, by
concatenating all the rows).

• But then we would then have to have a huge matrix to transform this input, resulting in a lot of parameters (especially if the image is high
resolution), which might be difficult to learn.

• The issue is that we’re not leverage knowledge that these are images. If you permute the components of the input vector x and re-train, you
will just get a permuted parameters, but the same predictions.



Convolutional neural networks

[Andrej Karpathy’s demo]
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• Convolutional neural networks (ConvNets or CNNs) is a refinement of the vanilla fully-connected neural networks tailored for images.

• It is also used for sequences such as text (everything is just 1D instead of 2D) or video (everything is 3D instead of 2D).

• Here is a visualization of a ConvNet making a prediction on this car image. There are a sequence of layers which turn the image into something
increasingly abstract, and finally we get a vector representing the probabilities of the different object categories.

• You can click on this link to see Andrej Karpathy’s demo, where you can create and train ConvNets in your browser.



Convolutional neural networks

Conv
x

Detect local patterns with filters.

MaxPool
x

Take the max over each 2x2 region.

[Andrej Karpathy’s demo]

AlexNet(x) = FeedForward3(MaxPool(Conv3(MaxPool(Conv(MaxPool(Conv(x)))))))
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• So let us now define the two basic building blocks of ConvNets. We’re not going to go through the details, but simply focus on the interface.
(You should take CS231N if you want to learn more about ConvNets.)

• First, Conv takes as input an image, which can be represented as a volume, which is a matrix for each channel (red, green, blue), and each
matrix has same height and width as the image.

• This function produces another volume whose height and width are either the same or a bit smaller than that of the input volume, and the
number of output channels could be different.

• The output volume is constructed by sweeping a filter over the input volume, and taking the dot product of the filter with a local part of the
input volume. That produces a number which you write into the output volume. The number of filters determines the number of channels
in the output volume.

• The second operation is MaxPool, which simply takes an input volume and reduces the width and height by taking the max over local regions.

• Note that MaxPool does not have any parameters and has the same number of input channels as output channels.

• Given just these two functions, Conv and MaxPool, as well as our friend FeedForward, we can express the famous AlexNet architecture,
which won the ImageNet competition in 2012 and arguably kicked off deep learning revolution.

• Note that each of these functions has its own parameters that need to be trained.

• Each one also has its own hyperparameters (number of channels, filter size, etc.).



Representing natural language
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• Now let us turn our attention to natural language processing. As a motivating example, suppose we wanted to build a question answering
system.

• Here are examples of questions from the SQuAD question answering benchmark, where the input is the paragraph, a question, and the goal
is to select the span of the paragraph that answers the question.

• This requires somehow relating the paragraph to the question; sometimes string match will work (e.g., ”precipitation”), and sometimes they
don’t (e.g., ”causes” and ”product”).



Embedding tokens

EmbedToken

abc

x

Looks up the vector for a token.

In meterology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity.

Meaning of words/tokens depends on context...
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• Words are discrete objects, whereas neural networks speak vectors.

• So the first step is to embed the words (more generally, tokens) into vectors. This is usually just accomplished by looking up the token in a
dictionary that maps tokens to vectors.

• Now given a sentence (sequence of tokens), we just embed each of the tokens independently to produce a sequence of vectors.

• However, this is not quite satisfactory because the meaning of words depends on context. For example, ”product” could mean result or it
could mean multiplication.



Representing sequences

SequenceModel
x1 x2 x3 x4

Process each element of a sequence with respect to other elements.

Two implementations:

• Recurrent neural networks

• Transformers
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• We’re now going to define an abstract function SequenceModel (to continue the programming metaphor).

• SequenceModel takes a sequence of vectors and produces a corresponding sequence of vectors, where each vector has been ”contextualized”
with respect to the other vectors.

• We will see two implementations, recurent neural networks and Transformers.



Recurrent neural networks

In meterology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity.

SequenceRNN : SequenceModel
x1 x2 x3 x4 x5

h1 h2 h3 h4 h5

RNN(h,x)

Read left-to-right, updating hidden state.

CS221 18



• A recurrent neural network (RNN) can be thought of as reading left to right. It maintains a hidden state which represents the past and gets
updated with each new input vector.

• At the end of the day, however, it still produces a sequence of (contextualized) vectors given a sequence of input vectors.

• We still have to specify how the RNN computes the new hidden state given the old hidden state and the new input.



Recurrent neural networks

SimpleRNN : RNN

h
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)
Update hidden state given a new input.

LSTM : RNN

h
x

Update hidden state given a new input without forgetting the past.
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• There are two types of RNNs I will talk about.

• A Simple RNN takes the old hidden state h, a new input x and produces a new hidden state.

• Both h and x get multiplied by a vector; the result is summed, and we apply the activation function as usual.

• Note that this is equivalent to just applying FeedForward on the concatenation of h and x.

• One problem with simple RNNs is that they suffer from the vanishing gradient problem, which makes them hard to train.

• Long Short-Term Memory (LSTMs) were developed in response to this problem. We won’t go over the details, but will just say that it
privileges h and makes sure that h doesn’t forget the history of inputs.



Collapsing to a single vector

Collapse
x1 x2 x3 x4

Summarize using one vector (first, last, or average).

Example text classification model:

In meterology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity.

score = w· Collapse(SequenceModel3(EmbedToken(x)))
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• Note that the sequence model produces a variable number of vectors. In order to do classifaction, we need to Collapse the vectors into one,
which can then be used to drive the score for classification.

• There are three common things that are done: return the first vector, return the last vector, or return the average of all of them.



Long-range dependencies

[CLS] What causes precipitation to fall? [SEP] In meterology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity.

Problem: RNN (and ConvNets) are very local

SequenceRNN : SequenceModel
x1 x2 x3 x4 x5

h1 h2 h3 h4 h5

RNN(h,x)

Read left-to-right, updating hidden state.
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• This is all nice, but there is one big problem with RNNs, which is that they are very local, meaning that the vector produced at a given
position will in practice only depend on a small neighborhood.

• On the other hand, language often has long-range dependencies.

• For the model to leverage this knowledge, it has to remember the first material in the hidden state, update that hidden state repeatedly
without forgetting what it learned.

• Instead we would like an architecture that can allow information to propagate more quickly and freely across the sequence. This architecture
is the Transformer. But we need to introduce a few preliminaries first.



Attention mechanism

Attention

x1 x2 x3 x4 y

=

x

softmax
( x> y )

x

softmax
( x> y )

Process y by comparing it to each xi.

Attention : SequenceModel
x1 x2 x3 x4 Attention(x, x1) Attention(x, x2) Attention(x, x3) Attention(x, x4)
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• This is a big slide.

• Attention is the core mechanism that allows us to model long-range dependencies effectively.

• Formally, attention takes a collection of input vectors x1, . . . , xn, a query vector y, and the goal is to process y in the context of the input
vectors.

• Let’s walk through the diagram slowly. We start with y and reduce its dimensionality. Similary, we can reduce the dimensionality for all rows
of x>.

• Now the key part is to take the dot product between the representation of y and the representation of each xi.

• We now have one column representing similarity scores (positive or negative) between y and each xi.

• We apply the softmax, which exponentiates each component and then normalizes to 1.

• We can use the distribution to take a convex combination of the columns of x. And finally we project onto the desired dimensionality.

• The above calculations is one attention head. In parallel, we go through the same motions to construct another vector. These are concantenated
together and projected down to the original space.

• Another form of easy attention (called self-attention) is self-attention, in which case the queries are simply the same elements.

• This provides a sequence model where all pairs of elements of the sequence interact.



Layer normalization and residual connections

AddNorm(f) : SequenceModel
x1 x2 x3 x4

Applies f to x safely.

AddNorm(f , x) = LayerNorm(x + f(x))
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• There are two other pieces we need to introduce before we can fully define the Transformer: layer normalization and residual connections.

• They can be thought of as technical devices to make the final network easier to train.

• Together, they can be packed up into AddNorm. The interface is the same as a sequence model: it takes a sequence of vectors and produces
a corresponding sequence of vectors.

• AddNorm takes a function f and applies it to the input x. Then we add x (called a residual connection), which allows information from x
to be directly passed through in case f is somehow messed up (say, early in training).

• Then we apply layer normalization, which takes a vector x and makes sure it’s not too small or big (or else gradients might vanish or explode).
Specifically, it subtracts the average of the elements of x and divides by the standard deviation. We do this for each vector in x.

• In summary, AddNorm applies f to x safely.



Transformer

TransformerBlock : SequenceModel
x1 x2 x3 x4

Processes each object xi in context.

TransformerBlock(x) = AddNorm(FeedForward, AddNorm(Attention, x))
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• Finally, we are ready to introduce the Transformer, which was introduced in 2017 and has really overthrown RNNs as the sequence model of
choice.

• The TransformerBlock is a sequence model that takes a sequence of vectors to corresponding sequence of contextual vectors.

• We’ve already defined all the pieces, so the Transformer is just a one-liner.

• First, we apply self-attention to x to contextualize the vectors. Then we apply AddNorm (layer normalization with residual connections) to
make things safe.

• Second, we apply a feedforward network to further process each vector independently. Then we do another AddNorm, and that’s it.

• Note: in the actual Transformer, the FeedForward function has an extra matrix at the end.



BERT

[CLS] What causes precipitation to fall? [SEP] In meterology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity.

BERT(x) = TransformerBlock24(EmbedToken(x))

[Devlin+, 2018]
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• Now we can explain BERT, the large unsupervised pretrained model which transformed NLP in 2018. Before then, there were many specialized
architectures for different tasks but BERT was a single model architecture that worked well across many tasks.

• BERT is a function that takes a sentence, turns it into a sequence of vectors, and then just applies a Transformer block 24 times.

• When it’s used for question answering, you concatenate the question with the paragraph.

• There are some details omitted: BERT defines tokens as word pieces as opposed to words. It also uses positional encodings as the Transformer
block is invariant to the order of the vectors.

• Note that we are also not talking about the objective function (masked language modeling, next sentence prediction) used to train BERT.



Generating tokens

GenerateToken

x

abc

y

Generate token y based on x· EmbedToken(y).

EmbedToken

abc

x

Looks up the vector for a token.
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• So far, we’ve mostly studied how to design functions that can process a sentence (sequence of tokens or vectors).

• We can also generate new sequences.

• The basic building block for generation is something that takes a vector and outputs a token.

• This process is the reverse of EmbedToken, but uses it as follows: we compute a score x· EmbedToken(y) for each candidate token.

• Then we apply softmax (exponentiate and normalize) to get a distribution over words y. From this distribution, we can either take the token
with the highest probability or simply sample a word from this distribution.



Generating sequences

LanguageModel

the quick brown

x
fox

Generate next token in the sequence.

LanguageModel(x) = GenerateToken(Collapse(SequenceModel(EmbedToken(x))))
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• In language modeling, we wish to generate (predict) the next token given the previous words generated so far.

• In this case, we simply take the history, which is a sequence of tokens, embed them, apply a sequence model (e.g., RNN or a Transformer).

• We then Collapse this into one vector (usually the last one).

• Now we’ve reduced the problem to something that GenerateToken can solve.



Sequence-to-sequence models

SequenceToSequence

la maison bleue

x LanguageModel the blue house

Generate a sequence from another sequence.

Applications:

• Machine translation: sentence to translation

• Document summarization: document to summary

• Semantic parsing: sentence to code
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• Perhaps the most versatile interface is sequence-to-sequence models, where the model takes as input a sequence of tokens and produces an
sequence of tokens.

• Importantly, the input sequence and the output sequence are not in 1:1 correspondence, and in general they have different lengths.

• Sequence-to-sequence models can be reduced to language modeling, where you feed in the input x along with the output tokens that you’ve
generated so far, and ask for the next token.

• There are a number of applications (mostly in NLP) that uses sequence-to-sequence models: machine translation, document summarization,
and semantic parsing to name a few.



Summary

FeedForward Conv MaxPool

EmbedToken SequenceRNN SimpleRNN LSTM

Attention AddNorm TransformerBlock BERT

Collapse GenerateToken LanguageModel SequenceToSequence

SequenceModel
x1 x2 x3 x4

Process each element of a sequence with respect to other elements.
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• In summary, we’ve done a whirlwind tour over different types of differentiable programs from deep learning.

• We started with feedforward networks (FeedForward), and then talked about convolutional neural networks (Conv, MaxPool).

• Then we considered token sequences (e.g., text), where we always start by embedding the tokens into vectors (EmbedToken).

• There are two paths: The first uses RNNs and the second uses Transformers.

• There are many details that we have glossed over, but the thing you should take away is to understand rigorously what the type signature of
all these functions are, and some intuition behind what the function is meant to be doing.


