
Machine learning: neural networks
• In this module, I will present neural networks, a way to construct non-linear predictors via problem decomposition.

Non-linear predictors

Linear predictors:

fw(x) = w · φ(x), φ(x) = [1, x]
0 1 2 3 4 5

x

0

1

2

3

4

y

Non-linear (quadratic) predictors:

fw(x) = w · φ(x), φ(x) = [1, x, x2]

0 1 2 3 4 5

x

0

1

2

3

4

y

Non-linear neural networks:

fw(x) = w · σ(Vφ(x)), φ(x) = [1, x]
0 1 2 3 4 5

x

0

1

2

3

4

y

CS221 2

• Recall that our first hypothesis class was linear (in x) predictors, which for regression means that the predictors are lines.

• However, we also showed that you could get non-linear (in x) predictors by simply changing the feature extractor φ. For example, by adding
the feature x2, one obtains quadratic predictors.

• One disadvantage of this approach is that if x were d-dimensional, one would need O(d2) features and corresponding weights, which presents
considerable computational and statistical challenges.

• We will show that with neural networks, we can leave the feature extractor alone, but increase the complexity of predictor, which can also
produce non-linear (though not necessarily quadratic) predictors.

• It is a common misconception that neural networks allow you to express more complex predictors. You can define φ to include essentially all
predictors (as is done in kernel methods).

• Rather, neural networks yield non-linear predictors in a more compact way. For instance, you might not need O(d2) features to represent the
desired non-linear predictor.

Motivating example

Example: predicting car collision

Input: positions of two oncoming cars x = [x1, x2]

Output: whether safe (y = +1) or collide (y = −1)

Unknown: safe if cars sufficiently far: y = sign(|x1 − x2| − 1)

x1 x2 y

0 2 1

2 0 1

0 0 -1

2 2 -1
-3 -2 -1 0 1 2 3

x1

-3

-2

-1

0

1

2

3

x
2

CS221 4

• As a motivating example, consider the problem of predicting whether two cars are going to collide given the their positions (as measured from
distance from one side of the road). In particular, let x1 be the position of one car and x2 be the position of the other car.

• Suppose the true output is 1 (safe) whenever the cars are separated by a distance of at least 1. This relationship can be represented by
the decision boundary which labels all points in the interior region between the two red lines as negative, and everything on the exterior (on
either side) as positive. Of course, this true input-output relationship is unknown to the learning algorithm, which only sees training data.
Consider a simple training dataset consisting of four points. (This is essentially the famous XOR problem that was impossible to fit using
linear classifiers.)

Decomposing the problem

Test if car 1 is far right of car 2:

h1(x) = 1[x1 − x2 ≥ 1]

Test if car 2 is far right of car 1:

h2(x) = 1[x2 − x1 ≥ 1]

Safe if at least one is true:

f(x) = sign(h1(x) + h2(x)) -3 -2 -1 0 1 2 3

x1

-3

-2

-1

0

1

2

3

x
2

h1(x)

h2(x)

x h1(x) h2(x) f(x)

[0, 2] 0 1 +1

[2, 0] 1 0 +1

[0, 0] 0 0 −1

[2, 2] 0 0 −1

CS221 6

• One way to motivate neural networks (without appealing to the brain) is problem decomposition.

• The intuition is to break up the full problem into two subproblems: the first subproblem tests if car 1 is to the far right of car 2; the second
subproblem tests if car 2 is to the far right of car 1. Then the final output is 1 iff at least one of the two subproblems returns 1.

• Concretely, we can define h1(x) to be the output of the first subproblem, which is a simple linear decision boundary (in fact, the right line in
the figure).

• Analogously, we define h2(x) to be the output of the second subproblem.

• Note that h1(x) and h2(x) take on values 0 or 1 instead of -1 or +1.

• The points can then be classified by first computing h1(x) and h2(x), and then combining the results into f(x).

Rewriting using vector notation

Intermediate subproblems:

h1(x) = 1[x1 − x2 ≥ 1] = 1[[−1,+1,−1] · [1, x1, x2] ≥ 0]

h2(x) = 1[x2 − x1 ≥ 1] = 1[[−1,−1,+1] · [1, x1, x2] ≥ 0]

h(x) = 1

[−1 +1 −1
−1 −1 +1

] 1
x1

x2

 ≥ 0

Predictor:

f(x) = sign(h1(x) + h2(x)) = sign([1, 1] · h(x))

CS221 8

• Now let us rewrite this predictor f(x) using vector notation.

• We can define a feature vector [1, x1, x2] and a corresponding weight vector, where the dot product thresholded yields exactly h1(x).

• We do the same for h2(x).

• We put the two subproblems into one equation by stacking the weight vectors into one matrix. Recall that left-multiplication by a matrix is
equivalent to taking the dot product with each row. By convention, the thresholding at 0 (1[· ≥ 0]) applies component-wise.

• Finally, we can define the predictor in terms of a simple dot product.

• Now of course, we don’t know the weight vectors, but we can learn them from the training data!

Avoid zero gradients

Problem: gradient of h1(x) with respect to v1 is 0

h1(x) = 1[v1 · φ(x) ≥ 0]

Solution: replace with an activation function σ with non-zero gradients

-5 -3 0 3 5

z = v1 · φ(x)

0

1

3

4

5

σ
(z
) Threshold: 1[z ≥ 0]

Logistic: 1
1+e−z

ReLU: max(z, 0)

h1(x) = σ(v1 · φ(x))
CS221 10

• Later we’ll show how to perform learning using gradient descent, but we can anticipate one problem, which we encountered when we tried to
optimize the zero-one loss.

• The gradient of h1(x) with respect to v1 is always zero because of the threshold function.

• To fix this, we replace the threshold function with an activation function with non-zero gradients

• Classically, neural networks used the logistic function σ(z), which looks roughly like the threshold function but has non-zero gradients
everywhere.

• Even though the gradients are non-zero, they can be quite small when |z| is large (a phenomenon known as saturation). This makes optimizing
with the logistic function still difficult.

• In 2012, Glorot et al. introduced the ReLU activation function, which is simply max(z, 0). This has the advantage that at least on the
positive side, the gradient does not vanish (though on the negative side, the gradient is always zero). As a bonus, ReLU is easier to compute
(only max, no exponentiation). In practice, ReLU works well and has become the activation function of choice.

• Note that if the activation function were linear (e.g., the identity function), then the gradients would always be nonzero, but you would lose
the power of a neural network, because you would simply get the product of the final-layer weight vector and the weight matrix (w>V),
which is equivalent to optimizing over a single weight vector.

• Therefore, that there is a tension between wanting an activation function that is non-linear but also has non-zero gradients.

Two-layer neural networks

Intermediate subproblems:
h(x)

= σ
(V

φ(x)

)
Predictor (classification):

fV,w(x) = sign
(w

·

h(x))
Interpret h(x) as a learned feature representation!

Hypothesis class:

F = {fV,w : V ∈ Rk×d,w ∈ Rk}

CS221 12

• Now we are finally ready to define the hypothesis class of two-layer neural networks.

• We start with a feature vector φ(x).

• We multiply it by a weight matrix V (whose rows can be interpreted as the weight vectors of the k intermediate subproblems.

• Then we apply the activation function σ to each of the k components to get the hidden representation h(x) ∈ Rk.

• We can actually interpret h(x) as a learned feature vector (representation), which is derived from the original non-linear feature vector φ(x).

• Given h(x), we take the dot product with a weight vector w to get the score used to drive either regression or classification.

• The hypothesis class is the set of all such predictors obtained by varying the first-layer weight matrix V and the second-layer weight vector
w.

Deep neural networks

1-layer neural network:

score =
w

·

φ(x)

2-layer neural network:

score =
w

· σ
(V

φ(x))
3-layer neural network:

score =
w

· σ
(V2

σ
(V1

φ(x)))
CS221 14

• We can push these ideas to build deep neural networks, which are neural networks with many layers.

• Warm up: for a one-layer neural network (a.k.a. a linear predictor), the score that drives prediction is simply a dot product between a weight
vector and a feature vector.

• We just saw for a two-layer neural network, we apply a linear layer V first, followed by a non-linearity σ, and then take the dot product.

• To obtain a three-layer neural network, we apply a linear layer and a non-linearity (this is the basic building block). This can be iterated any
number of times. No matter now deep the neural network is, the top layer is always a linear function, and all the layers below that can be
interpreted as defining a (possibly very complex) hidden feature vector.

• In practice, you would also have a bias term (e.g., Vφ(x) + b). We have omitted all bias terms for notational simplicity.

Layers represent multiple levels of abstractions
[figure from Honglak Lee]

CS221 16

• It can be difficult to understand what a sequence of (matrix multiply, non-linearity) operations buys you.

• To provide intuition, suppose the input feature vector φ(x) is a vector of all the pixels in an image.

• Then each layer can be thought of producing an increasingly abstract representation of the input. The first layer detects edges, the second
detects object parts, the third detects objects. What is shown in the figure is for each component j of the hidden representation h(x), the
input image φ(x) that maximizes the value of hj(x).

• Though we haven’t talked about learning neural networks, it turns out that the ”levels of abstraction” story is actually borne out visually
when we learn neural networks on real data (e.g., images).

Why depth?
φ(x)

h1(x) h2(x) h3(x) h4(x)
score

Intuitions:

• Multiple levels of abstraction

• Multiple steps of computation

• Empirically works well

• Theory is still incomplete

CS221 18

• Beyond learning hierarchical feature representations, deep neural networks can be interpreted in a few other ways.

• One perspective is that each layer can be thought of as performing some computation, and therefore deep neural networks can be thought of
as performing multiple steps of computation.

• But ultimately, the real reason why deep neural networks are interesting is because they work well in practice.

• From a theoretical perspective, we have a quite an incomplete explanation for why depth is important. The original motivation from
McCulloch/Pitts in 1943 showed that neural networks can be used to simulate a bounded computation logic circuit. Separately it has been
shown that depth k + 1 logic circuits can represent more functions than depth k. However, neural networks are real-valued and might have
types of computations which don’t fit neatly into logical paradigm. Obtaining a better theoretical understanding is an active area of research
in statistical learning theory.

Summary

score =
w

· σ(

V
φ(x)

)

• Intuition: decompose problem into intermediate parallel subproblems

• Deep networks iterate this decomposition multiple times

• Hypothesis class contains predictors ranging over weights for all layers

• Next up: learning neural networks

CS221 20

• To summarize, we started with a toy problem (the XOR problem) and used it to motivate neural networks, which decompose a problem into
intermediate subproblems, which are solved in parallel.

• Deep networks iterate this multiple times to build increasingly high-level representations of the input.

• Next, we will see how we can learn a neural network by choosing the weights for all the layers.

