Machine learning: non-linear features




e In this module, we'll show that even using the machinery of linear models, we can obtain much more powerful non-linear predictors.



Linear regression
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We will look at regression and later turn to classification.

Recall that in linear regression, given training data, a learning algorithm produces a predictor that maps new inputs to new outputs. The first
design decision: what are the possible predictors that the learning algorithm can consider (what is the hypothesis class)?

For linear predictors, remember the hypothesis class is the set of predictors that map some input = to the dot product between some weight
vector w and the feature vector ¢(z).

As a simple example, if we define the feature extractor to be ¢(z) = [1, x|, then we can define various linear predictors with different intercepts
and slopes.



More complex data
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How do we fit a non-linear predictor?
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e But sometimes data might be more complex and not be easily fit by a linear predictor. In this case, what can we do?
e One immediate reaction might be to go to something fancier like neural networks or decision trees.

e But let's see how far we can get with the machinery of linear predictors first.



Quadratic predictors

gb(fl?) — [17 L, xQ]

Example: ¢(3) =[1,3,9]

Non-linear predictors just by changing ¢
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The key observation is that the feature extractor ¢ can be arbitrary.

So let us define it to include an z? term.

Now, by setting the weights appropriately, we can define a non-linear (specifically, a quadratic) predictor.

The first two examples of quadratic predictors vary in intercept, slope and curvature.

Note that by setting the weight for feature 22 to zero, we recover linear predictors.

Again, the hypothesis class is the set of all predictors f,, obtained by varying w.

Note that the hypothesis class of quadratic predictors is a superset of the hypothesis class of linear predictors.

In summary, we've seen our first example of obtaining non-linear predictors just by changing the feature extractor ¢!

Advanced: here € R is one-dimensional, so 22 is just one additional feature. If z € R? were d-dimensional, then there would be O(d2)

quadratic features of the form x;x; for i,5 € {1,...,d}. When d is large, then d? can be prohibitively large, which is one reason that using
the machinery of linear predictors to increase expressivity can be problematic.



Piecewise constant predictors
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Example: ¢(2.3) =[0,0,1,0,0]
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Expressive non-linear predictors by partitioning the input space
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Quadratic predictors are still a bit restricted: they can only go up and then down smoothly (or vice-vera).
We introduce another type of feature extractor which divides the input space into regions and allows the predicted value of each region to
vary independently, yielding piecewise constant predictors (see figure).

Specifically, each component of the feature vector corresponds to one region (e.g., [0,1)) and is 1 if x lies in that region and 0 otherwise.

Assuming the regions are disjoint, the weight associated with a component/region is exactly the predicted value.

As you make the regions smaller, then you have more features, and the expressivity of your hypothesis class increases. In the limit, you can
essentially capture any predictor you want.

Advanced: what happens if x were not a scalar, but a d-dimensional vector? Then if each component gets broken up into B bins, then there
will be BY features! For each feature, we need to fit its weight, and there will in generally be too few examples to fit all the features.
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Predictors with periodicity structure

o(x) = [1,x, 22, cos(3x)]

Example: ¢(2) = [1,2,4,0.96]

f(x)=[1,1,-0.1,1] - ¢(x)
f(x)=1[3,—1,0.1,0.5] - ¢(x)
F={fw(x)=w-¢(x): wec R}

Just throw in any features you want
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Quadratic and piecewise constant predictors are just two examples of an unboundedly large design space of possible feature extractors.

Generally, the choice of features is informed by the prediction task that we wish to solve (either prior knowledge or preliminary data exploration).

For example, if = represents time and we believe the true output y varies according to some periodic structure (e.g., traffic patterns repeat
daily, sales patterns repeat annually), then we might use periodic features such as cosine to capture these trends.
Each feature might represent some type of structure in the data. If we have multiple types of structures, these can just be "thrown in" into

the feature vector.
Features represent what properties might be useful for prediction. If a feature is not useful, then the learning algorithm can assign a weight

close to zero to that feature. Of course, the more features one has, the harder learning becomes.



Linear in what?

Prediction:
fw(il?) — W gb(x)
Linear in w? Yes
Linear in ¢(z)?  Yes
Linear in x7 No!

—‘Q’ Key idea: non-linearity

e Expressivity: score w - ¢(x) can be a non-linear function of x

e Efficiency: score w - ¢(x) always a linear function of w
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Wait a minute...how are we able to obtain non-linear predictors if we're still using the machinery of linear predictors? It's a linguistic sleight
of hand, as "linear” is ambiguous.

The score is w - ¢(z) linear in w and ¢(x). However, the score is not linear in = (it might not even make sense because x need not be a
vector at all — it could be a string or a PDF file).

The significance is as follows: From the feature extractor’s viewpoint, we can define arbitrary features that yield very non-linear functions in
x.

From the learning algorithm’s viewpoint (which only looks at ¢(x), not x), linearity us to optimize the weights efficiently.

Advanced: if the score is linear in w and the loss function Loss is convex (which holds for the squared, hinge, logistic losses but not the
zero-one loss), then minimizing the training loss TrainLoss is a convex optimization problem, and gradient descent with a proper step size is
guaranteed to converge to the global minimum.
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Linear classification

Decision boundary is a line
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Now let's turn from regression to classification.
The story is pretty much the same: you can define arbitrary features to yield non-linear classifiers.

Recall that in binary classification, the classifier (predictor) returns the sign of the score.
The classifier can be therefore be represented by its decision boundary, which divides the input space into two regions: points with positive

score and points with negative score.
Note that the classifier fy (z) is a non-linear function of = (and ¢(x)) no matter what (due to the sign function), so it is not helpful to talk
about whether fy, is linear or non-linear. Instead we will ask whether the decision boundary corresponding to fy, is linear or not.
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Equivalently:

o)

Quadratic classifiers

¢(£U) — [mlvm%x% —|—£B%]

f(:l?) — Sign([27 2, _1] ' ¢($))

1 if{(z1-12?+(x2-1)?<2}

—1 otherwise

L2

Decision boundary is a circle
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Let us see how we can define a classifier with a non-linear decision boundary.

Let's try to construct a feature extractor that induces a decision boundary that is a circle: the inside is classified +1 and the outside is
classified -1.

We will add a new feature x5 + x3 into the feature vector, and define the weights to be as follows.

Then rewrite the classifier to make it clear that it is the equation for the interior of a circle with radius v/2.
As a sanity check, we you can see that = = [0, 0] results in a score of 0, which means that it is on the decision boundary. And as either of x;
or o grow in magnitude (either |z1| — oo or |z2| — o0), the contribution of the third feature dominates and the sign of the score will be

negative.



Visualization in feature space

Input space: x = |z, x2|, decision boundary is a circle

Feature space: ¢(z) = [z1,x2, 2% + 5], decision boundary is a hyperplane
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Let's try to understand the relationship between the non-linearity in x and linearity in ¢(x).
Click on the image to see the linked video (which is about polynomial kernels and SVMs, but the same principle applies here).
In the input space x, the decision boundary which separates the red and blue points is a circle.

We can also visualize the points in feature space, where each point is given an additional dimension z? + 3.

In this three-dimensional feature space, a linear predictor (which is now defined by a hyperplane instead of a line) can in fact separate the red
and blue points.

This corresponds to the non-linear predictor in the original two-dimensional space.
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Summary

fw(z) =W ¢(x)
linear in w, ¢(x)
non-linear in x

e Regression: non-linear predictor, classification: non-linear decision boundary

e Types of non-linear features: quadratic, piecewise constant, etc.

Non-linear predictors with linear machinery
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To summarize, we have shown that the term "linear” is ambiguous: a predictor in regression is non-linear in the input x but is linear in the
feature vector ¢(x).

The score is also linear with respect to the weights w, which is important for efficient learning.

Classification is similar, except we talk about (non-)linearity of the decision boundary.

We also saw many types of non-linear predictors that you could create by concocting various features (quadratic predictors, piecewise constant
predictors).

So next time someone on the street asks you about linear predictors, you should first ask them " linear in what?”



