
Markov networks: conditional independence



• In this module, I will talk about conditional independence, which allows us to connect the probabilistic notion of independence with connectivity
properties of the underlying factor graph.



Motivation

Key idea: graph

Leverage graph properties to derive efficient algorithms which are exact.
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• The goal is to take advantage of the fact that we have a factor graph. We will see how exploiting the graph properties can lead us to more
efficient algorithms as well as a deeper understanding of the structure of our problem.



Motivation

Backtracking search:

exponential time in number of variables n

X1 X2 X3 X4

Efficient algorithm:

maximize each variable separately
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• Recall that backtracking search takes time exponential in the number of variables n. While various heuristics can have dramatic speedups in
practice, it is not clear how to characterize those improvements rigorously.

• As a motivating example, consider a fully disconnected factor graph. (Imagine n people trying to vote red or blue, but they don’t talk to each
other.) It’s clear that to get the maximum weight assignment, we can just choose the value of each variable that maximizes its own unary
factor without worrying about other variables.



Independence

Definition: independence

• Let A and B be a partitioning of variables X.

• We say A and B are independent if there are no edges between A and B.

• In symbols: A ⊥⊥ B.
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{WA,NT,SA,Q,NSW,V} and {T}
are independent.
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• Let us formalize this intuition with the notion of independence. It turns out that this notion of independence is deeply related to the notion
of independence in probability, as we will see in due time.

• Note that we are defining independence purely in terms of the graph structure, which will be important later once we start operating on the
graph using two transformations: conditioning and elimination.



Non-independence

X1

X2 X3 X4 X5 X6 X7

No variables are independent of each other, but feels close...
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• When all the variables are independent, finding the maximum weight assignment is easily solvable in time linear in n, the number of variables.
However, this is not a very interesting factor graph, because the whole point of a factor graph is to model dependencies (preferences and
constraints) between variables.

• Consider the tree-structured factor graph, which corresponds to n− 1 people talking only through a leader. Nothing is independent here, but
intuitively, this graph should be pretty close to independent.



Conditioning

Goal: try to disconnect the graph

X1 X2

f(x1, x2)

x1 x2 f(x1, x2)

R R 1

R B 7

B R 3

B B 2

X1 g(x1) = f(x1,B)

x1 g(x1)

R 7

B 2

Condition on X2 = B: remove X2, f and add g
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Conditioning: example

Example: map coloring

Condition on Q = R and SA = G.
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New factors:

[NT 6= R]

[NSW 6= R]

[WA 6= G]

[NT 6= G]

[NSW 6= G]

[V 6= G]
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Conditioning: general

Graphically: remove edges from Xi to dependent factors

Xi

f1 f2 f3 g1 g2 g3

Definition: conditioning

• To condition on a variable Xi = v, consider all factors f1, . . . , fk that depend
on Xi.
• Remove Xi and f1, . . . , fk.

• Add gj(x) = fj(x ∪ {Xi : v}) for j = 1, . . . , k.
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• In general, factor graphs are not going to have many partitions which are independent (we got lucky with Tasmania, Australia). But perhaps
we can transform the graph to make variables independent. This is the idea of conditioning: when we condition on a variable Xi = v, this
is simply saying that we’re just going to clamp the value of Xi to v.

• We can understand conditioning in terms of a graph transformation. For each factor fj that depends on Xi, we create a new factor gj . The
new factor depends on the scope of fj excluding Xi; when called on x, it just invokes fj with x∪{Xi : v}. Think of gj as a partial evaluation
of fj in functional programming. The transformed factor graph will have each gj in place of the fj and also not have Xi.



Conditional independence

Definition: conditional independence

• Let A,B,C be a partitioning of the variables.
• We say A and B are conditionally independent given C if conditioning on C
produces a graph in which A and B are independent.
• In symbols: A ⊥⊥ B | C.

Equivalently: every path from A to B goes through C.
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Conditional independence

Example: map coloring

WA

NT

SA

Q

NSW

V

T

WA

NT

NSW

V

T

Conditional independence assertion:

{WA,NT} ⊥⊥ {V,NSW,T} | {SA,Q}
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• With conditioning in hand, we can define conditional independence, perhaps the most important property in factor graphs.

• Graphically, if we can find a subset of the variables C ⊂ X that disconnects the rest of the variables into A and B, then we say that A and
B are conditionally independent given C.

• Later, we’ll see how this definition relates to the definition of conditional independence in probability.



Markov blanket

How can we separate an arbitrary set of nodes from everything else?

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

Definition: Markov blanket

Let A ⊆ X be a subset of variables.

Define MarkovBlanket(A) be the neighbors of A that are not in A.
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Markov blanket

A

C

B

Proposition: conditional independence

Let C = MarkovBlanket(A).

Let B be X\(A ∪ C).

Then A ⊥⊥ B | C.
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• Suppose we wanted to disconnect a subset of variables A ⊂ X from the rest of the graph. What is the smallest set of variables C that we
need to condition on to make A and the rest of the graph (B = X\(A ∪ C)) conditionally independent.

• It’s intuitive that the answer is simply all the neighbors of A (those that share a common factor) which are not in A. This concept is useful
enough that it has a special name: Markov blanket.

• Intuitively, the smaller the Markov blanket, the easier the factor graph is to deal with.



Using conditional independence

For each value v = R,G,B:

Condition on X1 = v.

Find the maximum weight assignment (easy).

X1

X2 X3 X4 X5 X6 X7

R 3

G 6

B 1

maximum weight is 6
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• Now that we understand conditional independence, how is it useful?

• First, this formalizes the fact that if someone tells you the value of a variable, you can condition on that variable, thus potentially breaking
down the problem into simpler pieces.

• If we are not told the value of a variable, we can simply try to condition on all possible values of that variable, and solve the remaining problem
using any method. If conditioning breaks up the factor graph into small pieces, then solving the problem becomes easier.

• In this example, conditioning on X1 = v results in a fully disconnected graph, the maximum weight assignment for which can be computed
in time linear in the number of variables.



Summary

Independence: when sets of variables A and B are disconnected; can solve separately.

Conditioning: assign variable to value, replaces binary factors with unary factors

Conditional independence: when C blocks paths between A and B

Markov blanket: what to condition on to make A conditionally independent of the rest.
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• Independence is the key property that allows us to solve subproblems in parallel. It is worth noting that the savings is huge — exponential,
not linear. Suppose the factor graph has two disconnected variables, each taking on m values. Then backtracking search would take m2 time,
whereas solving each subproblem separately would take 2m time.

• However, the factor graph isn’t always disconnected (which would be uninteresting). In these cases, we can condition on particular values of
a variable. Doing so potentially disconnects the factor graph into pieces, which can be again solved in parallel.

• Factor graphs are interesting because every variable can still influence every other variable, but finding the maximum weight assignment is
efficient if there are small bottlenecks that we can condition on.


