

MDPs: epsilon-greedy

Exploration

Algorithm: reinforcement learning template ¬

For
$$t = 1, 2, 3, ...$$

Choose action $a_t = \pi_{\mathsf{act}}(s_{t-1})$ (how?)

Receive reward r_t and observe new state s_t

Update parameters (how?)

$$s_0; a_1, r_1, s_1; a_2, r_2, s_2; a_3, r_3, s_3; \dots; a_n, r_n, s_n$$

Which **exploration policy** π_{act} to use?

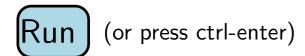
- We have so far given many algorithms for updating parameters (i.e., $\hat{Q}_{\pi}(s,a)$ or $\hat{Q}_{\text{opt}}(s,a)$). If we were doing supervised learning, we'd be done, but in reinforcement learning, we need to actually determine our **exploration policy** π_{act} to collect data for learning. Recall that we need to somehow make sure we get information about each (s,a).
- We will discuss two complementary ways to get this information: (i) explicitly explore (s, a) or (ii) explore (s, a) implicitly by actually exploring (s', a') with similar features and generalizing.
- These two ideas apply to many RL algorithms, but let us specialize to Q-learning.

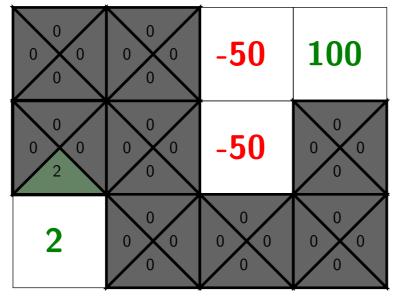
No exploration, all exploitation

(2,1)

S 2 (3,1)

Attempt 1: Set
$$\pi_{\mathsf{act}}(s) = \arg\max_{a \in \mathsf{Actions}(s)} \hat{Q}_{\mathsf{opt}}(s, a)$$





Average (lifetime) utility: 2

Problem: $\hat{Q}_{opt}(s, a)$ estimates are inaccurate, too greedy!

1

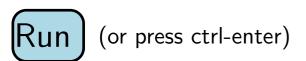
- The naive solution is to explore using the optimal policy according to the estimated Q-value $\hat{Q}_{\sf opt}(s,a)$.
- But this fails horribly. In the example, once the agent discovers that there is a reward of 2 to be gotten by going south that becomes its optimal policy and it will not try any other action. The problem is that the agent is being too greedy.
- In the demo, if multiple actions have the same maximum Q-value, we choose randomly. Try clicking "Run" a few times, and you'll end up with minor variations.
- Even if you increase numEpisodes to 10000, nothing new gets learned.

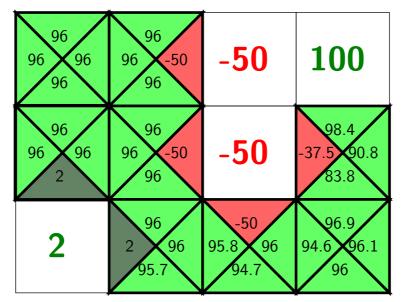
No exploitation, all exploration

(2,1)

S 2 (3,1)

Attempt 2: Set $\pi_{act}(s) = random from Actions(s)$





Average (lifetime) utility: -19.25

Problem: average utility is low because exploration is not guided

6

- We can go to the other extreme and use an exploration policy that always chooses a random action. It will do a much better job of exploration, but it doesn't exploit what it learns and ends up with a very low utility.
- It is interesting to note that the value (average over utilities across all the episodes) can be quite small and yet the Q-values can be quite accurate. Recall that this is possible because Q-learning is an off-policy algorithm.

Exploration/exploitation tradeoff

Key idea: balance -

Need to balance exploration and exploitation.

Examples from life: restaurants, routes, research

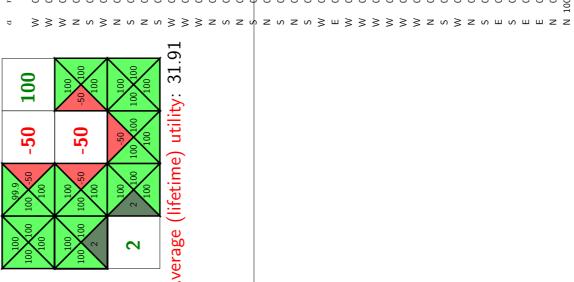
Epsilon-greedy

Algorithm: epsilon-greedy policy

 $\begin{cases} \arg\max_{a \in \mathsf{Actions}} \hat{Q}_{\mathsf{opt}}(s, a) \\ \mathsf{random from Actions}(s) \end{cases}$ $\pi_{\rm act}(s) =$

Ε, probability $1\,$ probability

> (or press ctrl-enter) Run



Average (lifetime) utility: 31.91

* (2.1) (2.1

- The natural thing to do when you have two extremes is to interpolate between the two. The result is the **epsilon-greedy** algorithm which explores with probability ϵ and exploits with probability 1ϵ .
- It is natural to let ϵ decrease over time. When you're young, you want to explore a lot $(\epsilon = 1)$. After a certain point, when you feel like you've seen all there is to see, then you start exploiting $(\epsilon = 0)$.
- For example, we let $\epsilon = 1$ for the first third of the episodes, $\epsilon = 0.5$ for the second third, and $\epsilon = 0$ for the final third. This is not the optimal schedule. Try playing around with other schedules to see if you can do better.