
MDPs: modeling





Dice game

Example: dice game

For each round r = 1, 2, . . .
• You choose stay or quit.

• If quit, you get $10 and we end the game.

• If stay, you get $4 and then I roll a 6-sided dice.

– If the dice results in 1 or 2, we end the game.

– Otherwise, continue to the next round.

Start Stay Quit

Dice: Rewards: 0
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• We’ll see more volcanoes later, but let’s start with a much simpler example: a dice game. What is the best strategy for this game?



Rewards

If follow policy ”stay”:
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• Let’s suppose you always stay. Note that each outcome of the game will result in a different sequence of rewards, resulting in a utility, which
is in this case just the sum of the rewards.

• We are interested in the expected utility, which you can compute to be 12.



Rewards

If follow policy ”quit”:

4 8 12 16 20

total rewards (utility)
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Expected utility:

1(10) = 10
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• If you quit, then you’ll get a reward of 10 deterministically. Therefore, in expectation, the ”stay” strategy is preferred, even though sometimes
you’ll get less than 10.



MDP for dice game

Example: dice game

For each round r = 1, 2, . . .
• You choose stay or quit.

• If quit, you get $10 and we end the game.

• If stay, you get $4 and then I roll a 6-sided dice.

– If the dice results in 1 or 2, we end the game.

– Otherwise, continue to the next round.

in in,stay

in,quit end

stay

(2/3): $4

(1/3): $4quit

1: $10
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• While we already solved this game directly, we’d like to develop a more general framework for thinking about not just this game, but also
other problems such as the volcano crossing example. To that end, let us formalize the dice game as a Markov decision process (MDP).

• An MDP can be represented as a graph. The nodes in this graph include both states and chance nodes. Edges coming out of states are the
possible actions from that state, which lead to chance nodes. Edges coming out of a chance nodes are the possible random outcomes of that
action, which end up back in states. Our convention is to label these chance-to-state edges with the probability of a particular transition
and the associated reward for traversing that edge.



Markov decision process

Definition: Markov decision process

States: the set of states

sstart ∈ States: starting state

Actions(s): possible actions from state s

T (s, a, s′): probability of s′ if take action a in state s

Reward(s, a, s′): reward for the transition (s, a, s′)

IsEnd(s): whether at end of game

0 ≤ γ ≤ 1: discount factor (default: 1)
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• A Markov decision process has a set of states States, a starting state sstart, and the set of actions Actions(s) from each state s.

• It also has a transition distribution T , which specifies for each state s and action a, a distribution over possible successor states s′.
Specifically, we have that

∑
s′ T (s, a, s

′) = 1 because T is a probability distribution (more on this later).

• Associated with each transition (s, a, s′) is a reward, which could be either positive or negative.

• If we arrive in a state s for which IsEnd(s) is true, then the game is over.

• Finally, the discount factor γ is a quantity which specifies how much we value the future and will be discussed later.



Search problems

Definition: search problem

States: the set of states

sstart ∈ States: starting state

Actions(s): possible actions from state s

Succ(s, a): where we end up if take action a in state s

Cost(s, a): cost for taking action a in state s

IsEnd(s): whether at end

• Succ(s, a) ⇒ T (s, a, s′)

• Cost(s, a) ⇒ Reward(s, a, s′)

CS221 12



• MDPs share many similarities with search problems, but there are differences (one main difference and one minor one).

• The main difference is the move from a deterministic successor function Succ(s, a) to transition probabilities over s′. We can think of the

successor function Succ(s, a) as a special case of transition probabilities: T (s, a, s′) =

{
1 if s′ = Succ(s, a)

0 otherwise
.

• A minor difference is that we’ve gone from minimizing costs to maximizing rewards. The two are really equivalent: you can negate one to
get the other.



Transitions

Definition: transition probabilities

The transition probabilities T (s, a, s′) specify the probability of ending up in state
s′ if taken action a in state s.

Example: transition probabilities

s a s′ T (s, a, s′)

in quit end 1

in stay in 2/3

in stay end 1/3
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• Just to dwell on the major difference, transition probabilities, a bit more: for each state s and action a, the transition probabilities specifies a
distribution over successor states s′.



Probabilities sum to one

Example: transition probabilities

s a s′ T (s, a, s′)

in quit end 1

in stay in 2/3

in stay end 1/3

For each state s and action a: ∑
s′∈States

T (s, a, s′) = 1

Successors: s′ such that T (s, a, s′) > 0
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• This means that for each given s and a, if we sum the transition probability T (s, a, s′) over all possible successor states s′, we get 1.

• If a transition to a particular s′ is not possible, then T (s, a, s′) = 0. We refer to the s′ for which T (s, a, s′) > 0 as the successors.

• Generally, the number of successors of a given (s, a) is much smaller than the total number of states. For instance, in a search problem, each
(s, a) has exactly one successor.



Transportation example

Example: transportation

Street with blocks numbered 1 to n.

Walking from s to s+ 1 takes 1 minute.

Taking a magic tram from s to 2s takes 2 minutes.

How to travel from 1 to n in the least time?

Tram fails with probability 0.5.

[semi-live solution]
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• Let us revisit the transportation example. As we all know, magic trams aren’t the most reliable forms of transportation, so let us asume that
with probability 1

2 , it actually does as advertised, and with probability 1
2 it just leaves you in the same state.



What is a solution?

Search problem: path (sequence of actions)

MDP:

Definition: policy

A policy π is a mapping from each state s ∈ States to an action a ∈ Actions(s).

Example: volcano crossing

s π(s)

(1,1) S

(2,1) E

(3,1) N

... ...
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• So we now know what an MDP is. What do we do with one? For search problems, we were trying to find the minimum cost path.

• However, fixed paths won’t suffice for MDPs, because we don’t know which states the random dice rolls are going to take us.

• Therefore, we define a policy, which specifies an action for every single state, not just the states along a path. This way, we have all our
bases covered, and know what action to take no matter where we are.

• One might wonder if we ever need to take different actions from a given state. The answer is no, since like as in a search problem, the state
contains all the information that we need to act optimally for the future. In more formal speak, the transitions and rewards satisfy the Markov
property. Every time we end up in a state, we are faced with the exact same problem and therefore should take the same optimal action.


