
MDPs: value iteration



• If we are given a policy π, we now know how to compute its value Vπ(sstart). So now, we could just enumerate all the policies, compute the
value of each one, and take the best policy, but the number of policies is exponential in the number of states (AS to be exact), so we need
something a bit more clever.

• We will now introduce value iteration, which is an algorithm for finding the best policy. While evaluating a given policy and finding the best
policy might seem very different, it turns out that value iteration will look a lot like policy evaluation.



Optimal value and policy

Goal: try to get directly at maximum expected utility

Definition: optimal value

The optimal value Vopt(s) is the maximum value attained by any policy.
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• We will write down a bunch of recurrences which look exactly like policy evaluation, but instead of having Vπ and Qπ with respect to a fixed
policy π, we will have Vopt and Qopt, which are with respect to the optimal policy.



Optimal values and Q-values

a
T (s, a, s′)

s

s, a s′

Vopt(s)

Vopt(s
′)

Qopt(s, a)

Optimal value if take action a in state s:

Qopt(s, a) =
∑
s′

T (s, a, s′)[Reward(s, a, s′) + γVopt(s
′)].

Optimal value from state s:

Vopt(s) =

{
0 if IsEnd(s)

maxa∈Actions(s)Qopt(s, a) otherwise.
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• The recurrences for Vopt and Qopt are identical to the ones for policy evaluation with one difference: in computing Vopt, instead of taking the
action from the fixed policy π, we take the best action, the one that results in the largest Qopt(s, a).



Optimal policies

a
T (s, a, s′)

s

s, a s′

Vopt(s)

Vopt(s
′)

Qopt(s, a)

Given Qopt, read off the optimal policy:

πopt(s) = arg max
a∈Actions(s)

Qopt(s, a)
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• So far, we have focused on computing the value of the optimal policy, but what is the actual policy? It turns out that this is pretty easy to
compute.

• Suppose you’re at a state s. Qopt(s, a) tells you the value of taking action a from state s. So the optimal action is simply to take the action
a with the largest value of Qopt(s, a).



Value iteration

Algorithm: value iteration [Bellman, 1957]

Initialize V
(0)
opt (s)← 0 for all states s.

For iteration t = 1, . . . , tVI:

For each state s:
V

(t)
opt (s)← max

a∈Actions(s)

∑
s′

T (s, a, s′)[Reward(s, a, s′) + γV
(t−1)
opt (s′)]︸ ︷︷ ︸

Q
(t−1)
opt (s,a)

Time: O(tVISAS
′)

[semi-live solution]
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• By now, you should be able to go from recurrences to algorithms easily. Following the recipe, we simply iterate some number of iterations,
go through each state s and then replace the equality in the recurrence with the assignment operator.

• Value iteration is also guaranteed to converge to the optimal value.

• What about the optimal policy? We get it as a byproduct. The optimal value Vopt(s) is computed by taking a max over actions. If we take
the argmax, then we get the optimal policy πopt(s).



Value iteration: dice game

s end in

V
(t)
opt 0.00 12.00

πopt(s) - stay

(t = 100 iterations)

CS221 10



• Let us demonstrate value iteration on the dice game. Initially, the optimal policy is ”quit”, but as we run value iteration longer, it switches
to ”stay”.



Value iteration: volcano crossing

Run (or press ctrl-enter) -50 20

-50

2
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• As another example, consider the volcano crossing. Initially, the optimal policy and value correspond to going to the safe and boring 2. But
as you increase numIters, notice how the value of the far away 20 propagates across the grid to the starting point.

• To see this propagation even more clearly, set slipProb to 0.



Convergence

Theorem: convergence

Suppose either

• discount γ < 1, or

• MDP graph is acyclic.

Then value iteration converges to the correct answer.

Example: non-convergence

discount γ = 1, zero rewards
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• Let us state more formally the conditions under which any of these algorithms that we talked about will work. A sufficient condition is that
either the discount γ must be strictly less than 1 or the MDP graph is acyclic.

• We can reinterpret the discount γ < 1 condition as introducing a new transition from each state to a special end state with probability (1−γ),
multiplying all the other transition probabilities by γ, and setting the discount to 1. The interpretation is that with probability 1 − γ, the
MDP terminates at any state.

• In this view, we just need that a sampled path be finite with probability 1.

• We won’t prove this theorem, but will instead give a counterexample to show that things can go badly if we have a cyclic graph and γ = 1.
In the graph, whatever we initialize value iteration, value iteration will terminate immediately with the same value. In some sense, this isn’t
really the fault of value iteration, but it’s because all paths are of infinite length. In some sense, if you were to simulate from this MDP, you
would never terminate, so we would never find out what your utility was at the end.



Summary of algorithms

• Policy evaluation: (MDP, π) → Vπ

• Value iteration: MDP → (Qopt, πopt)
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Unifying idea

Algorithms:

• Search DP computes FutureCost(s)

• Policy evaluation computes policy value Vπ(s)

• Value iteration computes optimal value Vopt(s)

Recipe:

• Write down recurrence (e.g., Vπ(s) = · · ·Vπ(s
′) · · · )

• Turn into iterative algorithm (replace mathematical equality with assignment operator)
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• There are two key ideas in this lecture. First, the policy π, value Vπ, and Q-value Qπ are the three key quantities of MDPs, and they are
related via a number of recurrences which can be easily gotten by just thinking about their interpretations.

• Second, given recurrences that depend on each other for the values you’re trying to compute, it’s easy to turn these recurrences into algorithms
that iterate between those recurrences until convergence.


