
Search: tree search

Backtracking search

[whiteboard: search tree]

If b actions per state, maximum depth is D actions:

• Memory: O(D) (small)

• Time: O(bD) (huge) [250 = 1125899906842624]
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• Now let’s put modeling aside and suppose we are handed a search problem. How do we construct an algorithm for finding a minimum cost
path (not necessarily unique)?

• We will start with backtracking search, the simplest algorithm which just tries all paths. The algorithm is called recursively on the current
state s and the path leading up to that state. If we have reached a goal, then we can update the minimum cost path with the current path.
Otherwise, we consider all possible actions a from state s, and recursively search each of the possibilities.

• Graphically, backtracking search performs a depth-first traversal of the search tree. What is the time and memory complexity of this algorithm?

• To get a simple characterization, assume that the search tree has maximum depth D (each path consists of D actions/edges) and that there
are b available actions per state (the branching factor is b).

• It is easy to see that backtracking search only requires O(D) memory (to maintain the stack for the recurrence), which is as good as it gets.

• However, the running time is proportional to the number of nodes in the tree, since the algorithm needs to check each of them. The number

of nodes is 1 + b + b2 + · · · + bD = bD+1−1
b−1 = O(bD). Note that the total number of nodes in the search tree is on the same order as the

number of leaves, so the cost is always dominated by the last level.
• In general, there might not be a finite upper bound on the depth of a search tree. In this case, there are two options: (i) we can simply cap

the maximum depth and give up after a certain point or (ii) we can disallow visits to the same state.
• It is worth mentioning that the greedy algorithm that repeatedly chooses the lowest action myopically won’t work. Can you come up with an

example?

Backtracking search

Algorithm: backtracking search

def backtrackingSearch(s, path):

If IsEnd(s): update minimum cost path

For each action a ∈ Actions(s):

Extend path with Succ(s, a) and Cost(s, a)

Call backtrackingSearch(Succ(s, a), path)

Return minimum cost path

[semi-live solution: backtrackingSearch]
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Depth-first search

Assumption: zero action costs

Assume action costs Cost(s, a) = 0.

Idea: Backtracking search + stop when find the first end state.

If b actions per state, maximum depth is D actions:

• Space: still O(D)

• Time: still O(bD) worst case, but could be much better if solutions are easy to find
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• Backtracking search will always work (i.e., find a minimum cost path), but there are cases where we can do it faster. But in order to do that,
we need some additional assumptions — there is no free lunch.

• Suppose we make the assumption that all the action costs are zero. In other words, all we care about is finding a valid action sequence that
reaches the goal. Any such sequence will have the minimum cost: zero.

• In this case, we can just modify backtracking search to not keep track of costs and then stop searching as soon as we reach a goal. The
resulting algorithm is depth-first search (DFS), which should be familiar to you. The worst time and space complexity are of the same order
as backtracking search. In particular, if there is no path to an end state, then we have to search the entire tree.

• However, if there are many ways to reach the end state, then we can stop much earlier without exhausting the search tree. So DFS is great
when there are an abundance of solutions.

Breadth-first search

Assumption: constant action costs

Assume action costs Cost(s, a) = c for some c ≥ 0.

Idea: explore all nodes in order of increasing depth.

Legend: b actions per state, solution has d actions

• Space: now O(bd) (a lot worse!)

• Time: O(bd) (better, depends on d, not D)
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• Breadth-first search (BFS), which should also be familiar, makes a less stringent assumption, that all the action costs are the same
non-negative number. This effectively means that all the paths of a given length have the same cost.

• BFS maintains a queue of states to be explored. It pops a state off the queue, then pushes its successors back on the queue.

• BFS will search all the paths consisting of one edge, two edges, three edges, etc., until it finds a path that reaches a end state. So if the
solution has d actions, then we only need to explore O(bd) nodes, thus taking that much time.

• However, a potential show-stopper is that BFS also requires O(bd) space since the queue must contain all the nodes of a given level of the
search tree. Can we do better?

DFS with iterative deepening

Assumption: constant action costs

Assume action costs Cost(s, a) = c for some c ≥ 0.

Idea:

• Modify DFS to stop at a maximum depth.

• Call DFS for maximum depths 1, 2, . . . .

DFS on d asks: is there a solution with d actions?

Legend: b actions per state, solution size d

• Space: O(d) (saved!)

• Time: O(bd) (same as BFS)
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• Yes, we can do better with a trick called iterative deepening. The idea is to modify DFS to make it stop after reaching a certain depth.
Therefore, we can invoke this modified DFS to find whether a valid path exists with at most d edges, which as discussed earlier takes O(d)
space and O(bd) time.

• Now the trick is simply to invoke this modified DFS with cutoff depths of 1, 2, 3, . . . until we find a solution or give up. This algorithm is
called DFS with iterative deepening (DFS-ID). In this manner, we are guaranteed optimality when all action costs are equal (like BFS), but
we enjoy the parsimonious space requirements of DFS.

• One might worry that we are doing a lot of work, searching some nodes many times. However, keep in mind that both the number of leaves
and the number of nodes in a search tree is O(bd) so asymptotically DFS with iterative deepening is the same time complexity as BFS.



Tree search algorithms

Legend: b actions/state, solution depth d, maximum depth D

Algorithm Action costs Space Time

Backtracking any O(D) O(bD)

DFS zero O(D) O(bD)

BFS constant ≥ 0 O(bd) O(bd)

DFS-ID constant ≥ 0 O(d) O(bd)

• Always exponential time

• Avoid exponential space with DFS-ID
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• Here is a summary of all the tree search algorithms, the assumptions on the action costs, and the space and time complexities.

• The take-away is that we can’t avoid the exponential time complexity, but we can certainly have linear space complexity. Space is in some
sense the more critical dimension in search problems. Memory cannot magically grow, whereas time ”grows” just by running an algorithm for
a longer period of time, or even by parallelizing it across multiple machines (e.g., where each processor gets its own subtree to search).

Tree Search Review
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