CS221 Final Exam Review

Week 10
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Exam topics

CSPs

Markov networks
Bayesian networks
Logic
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Questions encountered

e What is the difference between a Markov net, Bayesian net, HMM
and Markov model?

® Why Gibbs sampling? How to compute P(x. [ X )?

e Whatis the FB algorithm? What does F and B mean? Why is it
prob? Why do we only we use it for HMMs?
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Outline

® Markov networks vs Bayesian networks vs Markov models vs HMMs

® Markov networks
o Gibbs sampling

® Bayesian networks
o Forward backward algorithm

What are we leaving out?

e [More about Bayesian networks - PS week 8
® Logic-PS week9
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https://edstem.org/us/courses/57405/discussion/4988196
https://edstem.org/us/courses/57405/discussion/5006317

Outline

e Markov networks vs Bayesian networks vs Markov models vs
HMMs

e Markov networks
o Gibbs sampling

® Bayesian networks
o Forward backward algorithm
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All the different nets
8(X %, X,X,) = F (X % ,%,) x F(x,,X,)

Markov networks: g = P when
normalized, fi’s >=0

Bayesian networks: g =P, and f's are
conditional Ps, hence directed and Z
=1
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All the different nets
8(X %, X,X,) = F (X % ,%,) x F(x,,X,)

Markov networks: g = P when
normalized, fi’s >=0

Bayesian networks: g =P, and f's are
conditional Ps, hence directed and Z
=1

Markov models:
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All the different nets
8(X %, X,X,) = F (X % ,%,) x F(x,,X,)

Why factorize?

e Simplifies g

e Reduced # params

e Table size: O(|domain|?)
reduced to O(|domain|3)

_— —_— _— —_— _— —_— _— —_— _—
- =~
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Outline

® Markov networks vs Bayesian networks vs Markov models vs HMMs
e Markov networks
o Gibbs sampling

® Bayesian networks
o Forward backward algorithm
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Markov nets
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Markov nets
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Markov nets
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Markov nets
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Markov nets: Why Gibbs?

e Compute P(x) using P(x. | X_) instead of summing over X _

- Algorithm: Gibbs sampling

Initialize z to a random complete assignment

___________ 1
Set z; = v with prob.:]P’(Xi =v|X_;=2_;)!

5 — g - - - — J
(X_; denotes all variables except X;)

Increment count;(z;)

Estimate P(X; = z;) = zcoir;tursf(z;)

For more practice on Gibbs sampling: refer PS week 7
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https://edstem.org/us/courses/57405/discussion/4966763

Outline

® Markov networks vs Bayesian networks vs Markov models vs HMMs
e Markov networks
o Gibbs sampling

e Bayesian networks
o Forward backward algorithm

Stanford University 15



Forward backward algorithm

e Compute P(h. | e’s)
e Applicable only to HMMs or similar

e What special about markov models?
o One parent for each node

Intuition:

F(h)="P(h,ele_)

B(h)=P(e,|h)

S(hi) oc P(hi,ei|e<i) X P(e>i|hi) oc P(hile’s)

For more details refer: wiki

Stanford University
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https://en.wikipedia.org/wiki/Forward%E2%80%93backward_algorithm

Problem: P2, Winter 2021 Exam 2

Pick a coin Toss it
— ? > H/T?
= | P (H)=
Gambling PolCd = A, ) =P
Machine

With probability A coin
at “t” is same as “t-1”
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How does the bayesian net look?

P(e)= % }&* ) = A Ga G
9, e PL el ) -9 %dbz

-
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Inference: FB in practice

e Stop after two steps, observe {H,H}

select /\ select X

Start

N

Stanford University
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Inference: FB in practice

e Stop after two steps, observe {H,H}
e Draw FB lattice representation

Ci=X

S
|
>

start end

Stanford University



Inference: FB in practice

e Stop after two steps, observe {H,H}
e \What are the weights of edges?

)\Op

start

(1-Ag)p,

end

Ap
01=X 2 >CQ—X
)P,
(1-K)p,
C’le )\p =OQ—Y

Stanford University
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Inference: FB in practice

e Stop after two steps, observe {H,H}
e Compute forward passes and backward passes

)\px
Aop Cl — X - CQ — X 1
)P,
start end
(1-K)p,
(1_)\0)py Cl = Y < OQ P Y 1
Ap
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Inference: FB in practice

e Stop after two steps, observe {H,H}
e Compute forward passes and backward passes

(X) = dopx Fy(X) = w(X, X) - Fi(X) +w(Y, X) - Fy(Y)
Fi(Y) = (1= Xo)py FY)=wX,Y) Fi(X)+w(,Y)  F(Y)

Bi(X) =1 Bi1(X) = w(X, X) - By(X) +w(X,Y) - By(Y)

By(Y) =1 Bi(Y) =w(Y,X) - By(X) + w(Y,Y) - By(Y)

For more about Bayesian networks: PS Week 8
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https://edstem.org/us/courses/57405/discussion/4988196

Bayesian Networks

e Key Concepts to review:
o Exact Inference
o Sampling

o Probability: conditional independence, Bayes theorem.
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Bayesian Networks Inference

Joint distribution: the chain rule + conditional independence gives us a general way to
compute joint distributions:

n n
Pty ) = | | PCulty, wosxicy) = [ [ PCulparents (x)
i=1 i=1

- Example: P(s, c1,t,c2) = P(s) P(c1) P(t | c1)P(c2 | cl1)

P(C_1)

Snake
Encounter
P(S)
=

P(T|C_1) P(T | C_2)
Stanford University
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Gibbs Sampling

all variables except X_

/ TN b A 2 A

- ! Algorithm: Gibbs sampling \ X H\X2 a H\fs/
4 4
— LIJm Loz oy

Initialize x to a random complete assignment
Loop through 7 = 1,...,n until convergence: P RUYESY
[ X X X3

Seta:z—vwnhprob PX;=v|X_;=2z_;) W\

(X_; denotes all variables except X;) hor fex Los
Increment count;(x;) _

Esti B(X, — count; (z) £ Xl\—tDl—(/ X2\>—t32_ X3\
stimate P(X; = z;) = > eone (V) @ @ U
;01 ;ﬁoz l\03

Weight(z U {X5:0}) =1 prob. 0.2 0 0.2 0.6 1

Weight(z U {X5:1}) =2 prob. 0.4 : | | ® :

Weight(z U {X5 :2}) =2 prob. 0.4

Stanford University



Markov Blanket and Gibbs Sampling

- Problem: How do we sample from P(Xi | all other nodes in Bayes Net)?

- We actually only have to worry about a smaller subset of nodes

- Arandom variable is conditionally independent of all other nodes given its Markov
blanket: parents, children, children’s parents

- To sample from P(Xi | mb(Xi)) , compute P(Xi, mb(Xi)) and normalize

P(X;|mb(X;)) «< P(X;|parents(X;)) P(yj |parents(Yj))
YjEChzid‘;'Len(Xi)

P(C | mb(C)) =P(C|s,r) x P(C)P(s|C)P(r|C)
P(S| mb(S)) =P(S|c,w) x P(S|c)P(w|S,1)
P(R | mb(R)) = P(R|c,w) «< P(R|c)P(w|s,R)
P(W | |mb(W))=PW |s,1)

Stanford University 27




Bayes Nets Problem

Stanford University

1) Problem 1: Inferencia

As the president of the National Trivia Association, you must choose between the
Bayesians and the Markovians, the nation’s top two rival trivia teams, to represent the
US at the World Trivia Olympics. To determine the more popular team, you decide
to model the change in monthly TV viewership using a Bayesian network.

Let B;, M, denote the number of TV viewers the Bayesians, Markovians have in month
t, which cannot be observed directly. You can observe two other quantities which they
influence: let S; be the number of times internet users searched for the Bayesians in
month t. Let A, be the attendance of the televised friendly match at The Rose &
Crown pub between the Bayesians and the Markovians in month ¢.

The fanbases of the two teams evolve according to the following model, where each
month a fan is either gained or lost with equal probability:

3 My =M-1 3 fBy=B-1
Pr(My|My) = { § if My =M +1 Pr(Bu|B) = {3 if Bia=B+1
0 otherwise 0 otherwise

The Bayesian fans like to rewatch their trivia shows by searching the recaps online!
‘We model the fan’s size’s influence on the number of internet searches by:

03 ifS, =B

025 ifS;=B;—1

02 ifS,=B-2

015 ifS;=B;—3

01 ifS,=B—-4

0 otherwise

Pr(S:|B:) =

Because most TV viewers attend each monthly friendly matches at the pub, we model
the influence of the TV viewership number on the friendly match attendance by:

014 if A, =B+ M,

0.13 if [A; — (B:+ My)| =1

0.11 if [A, — (Be+ M) =2
Pr(Ay|B;, M) = € 0.09 if |4, — (B, + M,)| =3

0.06 if |Az = (BL + Mz)| =4

0.04 if [A, — (Bi+ My)| =5

0 otherwise

28



Bayes Nets Problem

Note: The only assumptions you may make in a given part are those which are
explicitly stated in that part’s description.

(a) Model the changing fanbases as a Bayesian network. You should create 8 nodes:
By, Biy1, My, Myiq, Ai, Aii1, St, and Si41. Indicate which nodes correspond to
latent /hidden fanbase counts and which correspond to the observable emissions.
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v
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Bayes Nets Problem

(b) Domain Consistencies

As a first step, we will not concern ourselves with which fanbase counts are prob-
able, but instead which counts are even possible. Suppose that we observe, in our
first month of collecting data, that S; = 75 and A; = 100. Give the domains for
M; and B; that are consistent with these observations. You need only give the
consistent domains (using either set notation or inequality notation).

Stanford University 30



Bayes Nets Problem

(c) Inference

Suppose the Bayesian’s trivia team captain took a nationwide poll in month ¢ that
concluded they had exactly 75 TV viewers. Suppose additionally that in month
t 4+ 2, the search engine reported 73 people search for the Bayesians online. What
is the probability that in month £+ 1, 72 people searched for the Bayesians online?

Pr(Siy1 = 72|B, = 75) =

Stanford University 31



Bayes Nets Problem

(d) Gibbs Sampling
You decide that you’d be satisfied with simply being able to draw samples from
distributions rather than specifying them exactly. In particular, we want to esti-
mate P(B;). You decide to implement Gibbs sampling for this purpose. Assume
that all necessary information is provided to you. Provide the set of nodes such
that if those nodes are observed, when performing Gibbs sampling, the random
variable B; will be conditionally independent from all other nodes.

Stanford University 32



Problem 2

3) Problem 3: Hidden Markov Models

Let’s consider the following HMM, with the state transition provided in the figure
above. For example P(X:11 = s3/X: = s2) = 0.8. Missing edges correspond to zero
transition probability. The table below provides the observation probabilities. For
example, P(O; = ¢|X; = s5) = 0.5.

For each of the items below, insert >, <, = into the parenthesis between the expressions.
We will use the following abbreviation: P(O = abe, Xy = s1) = P(O; = a,0; =b,03 =
¢, X, = s1) (Hint: the answers can be found without doing much computation.) Justify
your work.

e P(O=abca, X, =s1,X4=36) ( ) P(O=abca|X;=s1,X4=56)

1
e P(O=uacdb) () P(O=acdb|X,=s4,X5=s5)

Stanford University
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Constraint Satistaction
Problems




Review: CSPs

—% Definition: factor graph

Variables:
X = (X1,...,X5), where X; € Domain;
: fa fa Factors:

: fi,-.-, fm, with each f;(X) >0

I\

—% Definition: assignment weight

Objective:

Each assignment x = (z1,...,x,) has a weight:

Weight(z) = [ /() arg max Weight(x)
j=1

Stanford University
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—@ Algorithm: backtracking search

Backtrack(x, w, Domains):
e |f x is complete assignment: update best and return

e For each value v in that order:

e i ] filzu{Xi:v})

ijD(m’Xi)
e If 6 =0: continue

If any Domains; is empty: continue
e Backtrack(z U {X; : v}, wd, Domains')

Stanford University 36



— Algorithm: backtracking search

Backtrack(x, w, Domains):
e |f x is complete assignment: update best and return

- Pick an ordering
®

e For each value v in that order:
e i ] filzu{Xi:v})
fi€D(z,X;)
e If 6 = 0: continue

Figure out how good your
variable assignment is

Prune domains based on

If any Domains; is empty: continue selection

e Backtrack(z U {X; : v}, wd, Domains’) Recurse

Stanford University 37



— Algorithm: backtracking search

Backtrack(x, w, Domains):
e |f x is complete assignment: update best and return
o (1) How do we pick next variable?
o (2) How do we pick next value?
e For each value v in that order:
e i ] filzu{Xi:v})
fi€D(z,X:)
e If 6 =0: continue
° (3) How do we lookahead?
e If any Domains; is empty: continue
e Backtrack(z U {X; : v}, wd, Domains’)

Stanford University 38



Most Constrained Variable

(1) How do we pick next variable?

.//\ N\D:I

SA ) ?—<NSW\

Which variable to assign next?
|"@' Key idea: most constrained variable—

Choose variable that has the smallest domain.

Stanford University 39



Ordering Values of a Variable

(2) How do we pick next value?
What values to try for Q7

=
. )Q
& B - @i -
[SA —————Nsw, SA — —Nsw
- . i o
(v om
TN P
T om (T )
2+ 2 + 2 = 6 consistent values 1+ 1+ 2 =4 consistent values

N
‘@ Key idea: least constrained value

Order values of selected X; by decreasing number of consistent values of neighboring
variables.

Stanford University 40



CSP Heuristics

Most constrained variable (MCV): (1) How do we pick next variable?
® Must assign every variable '
e |f going to fail, fail early = more pruning

® Most useful when *some* factors are constraints

— Recall: constraints

A constraint is a factor where some setting of the variables will
cause it to take on a value of zero!

Stanford University 41



CSP Heuristics

Most constrained variable (MCV): (1) How do we pick next variable?
® Must assign every variable
e |f going to fail, fail early = more pruning
® Most useful when *some* factors are constraints
Least constrained value (LCV):
e Need to choose some value (2) How do we pick next value?
® Choose value that is most likely to lead to solution

® Most useful when *all* factors are constraints

— Recall: constraints

A constraint is a factor where some setting of the variables will
cause it to take on a value of zero!

Stanford University 42



CSP Heuristics

Most constrained variable (MCV): (1) How do we pick next variable?
® Must assign every variable
e If going to fail, fail early = more pruning
® Most useful when *some* factors are constraints
Least constrained value (LCV):
e Need to choose some value (2) How do we pick next value?
® Choose value that is most likely to lead to solution

® Most useful when *all* factors are constraints

Note: These heuristics are most useful in general when we don’t need to find the optimal solution,
such as when factors do not have weights (thus any final solution is optimal)

Stanford University 43



Arc Consistency

(3) How do we lookahead?

—% Definition: arc consistency

A variable X; is arc consistent with respect to X if for each z; € Domain;, there
exists z; € Domain; such that f({X; : ;, X, : =;}) # 0 for all factors f whose
scope contains X; and X;.

'_

Algorithm: enforce arc consistency

EnforceArcConsistency(X;, X;): Remove values from Domain; to make X; arc con-
sistent with respect to Xj.

Stanford University
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(3) How do we lookahead?

Forward checking: when assign X : x;, set Domain; = {z;} and enforce arc consistency on
all neighbors X; with respect to X

AC-3: repeatedly enforce arc consistency on all variables

)

‘g Algorithm: AC-3

%
N

While S is non-empty:

—{

)
o A
1
=

Remove any X; from S.

For all neighbors X; of X;:
Enforce arc consistency on X; w.r.t. Xj.
If Domain; changed, add X, to S.

Pt
;

N

7N
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- g Algorithm: backtracking search

Backtrack(z, w, Domains):
e If x is complete assignment: update best and return
[

e For each value v in that order:
i+ | filu{Xi:v})
fi€D(z,X;)
e |If 6 = 0: continue

e If any Domains is empty: continue
e Backtrack(z U {X; : v}, wd, Domains')

Stanford University
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Alternatives to Backtracking: Beam Search

Idea: keep < K candidate list C' of partial assignments

- Algorithm: beam search

Initialize C < [{}]

Foreachi=1,...,n:
Extend:
C' +— {zU{X;:v}:z € C,v € Domain;}
Prune:

C < K elements of C’ with highest weights

Not guaranteed to find maximum weight assignment!

Stanford University



Alternatives to Backtracking: Beam Search

Idea: keep < K candidate list C' of partial assignments Note: we still have a choice of
_ variable ordering!

— Algorithm: beam search
Initialize C < [{}] /

Foreachi=1,...,n:
Extend:
C' +— {zU{X;:v}:z € C,v € Domain;}
Prune:

C < K elements of C’ with highest weights

Not guaranteed to find maximum weight assignment!

Stanford University a8



Alternatives to Backtracking: ICM

¢ |CM: start with a random complete assignment. Repeatedly loop through all the variables X _i.
e On variable X_i, we consider all possible ways of re-assigning it Xi : v for v € Domaini, and choose

the new assignment that has the highest weight.
e We represent each step of the algorithm by having shaded nodes for the variables which are fixed

and unshaded for the single variable which is being re-assigned.

- Algorithm: iterated conditional modes (ICM)-

Initialize = to a random complete assignment

Loop through 2 =1,...,n until convergence:
Compute weight of z, = x U {X; : v} for each v
x < x, with highest weight

/— t1 / \ 2 / \ // \ t Vsl 12 //_"'\ ‘_//_"\ tq / N to TN
‘lX1—*X2f‘”‘X3 ‘Xl,“”“Xm“*Xs' (X1 — ‘*Xz*'”“Xss
N A . A 4 . 4 - 4

T 101 T 02 |T1 03 ITI 01 \T\ 02 \T 03 \T\ 01 % 102 |T\ 03

Stanford University
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CSP Problem

Stanford University

4) Problem 4: CA Assignment

Every quarter, the Stanford computer science department assigns graduate students as
course assistants (CAs). Students who wish to serve as CAs fill out an application in
which they can list the classes they’d like to CA for. After the application due date, the
department matches applicants to courses, taking into account student preferences as
well as how many course assistants each class needs. Here’s the formal CA-assignment
problem setup:

e There are n students Sy, ..., S, who apply for CAships.
e There are m courses C4, ..., Cy, that have CA openings.

e Each student S; specifies arbitrary non-negative preferences Pl(i), 5 3 ,PT(ni) >0 for
each of the m classes. A large preference value Pj(z) means student S; really wants

to CA for class C}, and a preference value of 0 for Pj(i) means student S; does not
want to CA for class Cj.

The CA-matching process must adhere to the following requirements:

e Each course C; can have a maximum of M; course assistants.
e Every student must be matched to exactly one class for which they have specified
a positive preference (assume each student has at least one such preference).

Model the CA-matching process with a CSP with n variables, one for each student
S1,...,Sp. Our CSP should find the mazimum weight assignment, where the weights
are determined by student preferences.

(a) What is the domain of each variable and what is the cardinality?

50



CSP Problem

(b) What are the factors? State the arity of each.

Stanford University
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CSP Problem

(c) We imagine a small setting of this problem for 3 students S, S2, S3 and 3 courses
C1, Oy, (5. The student preferences are given by the following table:

C1| Gy | Cs
S113 |0 |0
S22 |1 |3
Ss|5 |3 |0

Additionally, classes C and C3 can have a maximum of 1 CA each, and class Cj
can have at most 2 CAs.

Apply the CSP you designed to this small setting and enforce arc-consistency
amongst its variables. In particular, write out each variable and its domain after
arc-consistency has been enforced. For example, if you have a variable X; with a
domain {a, b, c} after enforcing arc-consistency, you should write

X; : {a,b,c}

Stanford University
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CSP Problem

(d) True or False, with justification.

i. The least constrained value (LCV) heuristic would be a useful optimization
for our CA-assignment CSP.

ii. The most constrained variable (MCV) heuristic would be a useful optimzation
for our CA-assignment CSP.

iii. If we use the ICM algorithm to solve our CA-assignment CSP, everytime
we modify a single variable assignment our factor recomputation will be on
the order of n (recall that n is the number of students applying for a CA
assignment).

iv. If we use beam search with different beam sizes k to solve our CA-assignment
CSP, our solution’s assignment weight will always increase as we increase the
beam size k.
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CSP Problem

(e) Explain how you would modify your CSP from part a. to allow for the possibility
that some students aren’t matched to a course. You should encode the (realistic)
assumption that not receiving a CAship is the least-preferable assignment for the
student. (Note that students can still give a preference of 0 for a class if they do

not want to be a CA for that class, and your modification should not prohibit
this.)
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Logic




Logic

e Key Concepts to review:
o Propositional Logic (KB, etc)
o  FOL Semantics

o Logical Inference

Stanford University
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Syntax of Propositional Logic

Propositional symbols (atomic formulas): A, B,C

Logical connectives: =, A, V, —, <+

Build up formulas recursively—if f and g are formulas, so are the following:
e Negation: —f
e Conjunction: fAg
e Disjunction: fVg
e Implication: f — g

e Biconditional: f < ¢

Stanford University
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First-Order Logic

® The expressive power of Propositional Logic is limited. For example, it cannot express expressions
such as “for all” or “for some”. It is also difficult to express relationships.

e First Order Logic (abbreviated as FOL), also known as predicate logic, combines quantifiers and
predicates for a more powerful and compact formalism.

([ J

You should be comfortable with translate sentences into first-order logic!

Terms (refer to objects):
e Constant symbol (e.g., arithmetic)
e Variable (e.g., x)

e Function of terms (e.g., Sum(3,x))

Formulas (refer to truth values):

e Atomic formulas (atoms): predicate applied to terms (e.g., Knows(z, arithmetic))
e Connectives applied to formulas (e.g., Student(xz) — Knows(z, arithmetic))

e Quantifiers applied to formulas (e.g., Vz Student(z) — Knows(z, arithmetic))
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Knowledge Base

-% Definition: Knowledge base

tion:

satisfying those constraints.

M(KB)

A knowledge base KB is a set of formulas representing their conjunction / intersec-

= (] M(f).

FEKB

Intuition: KB specifies constraints on the world. M(KB) is the set of all worlds

Let KB = {Rain V Snow, Traffic}.

M (Rain V Snow) (

Stanford University

) M(Traffic)

59



Entailment

M(f) must be the superset!

M(f)

Intuition: f added no information/constraints (it was already known).

—% Definition: entailment

KB entails f (written KB |= f) iff
M(KB) € M(f).

Example: Rain A Snow = Snow

Stanford University
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Contradiction

Intersection is the empty set

o

Intuition: f contradicts what we know (captured in KB).

Definition: contradiction
[KB contradicts f iff M(KB) N M(f) = 0.

Example: Rain A Snow contradicts —Snow

Stanford University
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Entailment & Contradiction

@ O

M(=f)

Contradiction:

Entailment:

|" Proposition: contradiction and entailment

KB contradicts f iff KB entails —f.

5221

|

Stanford University
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Contingency

Intuition: f adds non-trivial information to KB

0 € M(KB) N M(f) S M(KB)

Example: Rain and Snow

Stanford University

The intersection
is not in M(f) nor
M(KB)!

63



Satisfiability

% DeRnition: satishability

A knowledge base KB is satisfiable if M (KB) # ().

Reduce Ask[f] and Tell[f] to satisfiability:

Is KB U {~f} satisfiable? |

no yes
entailment Is KBU {f} satisfiable?
no yes
contradiction contingent

CSs221

Stanford University

36

64



Logic Problem

a. (12 points) Knowledge Base

Imagine we are building a knowledge base of propositions in first order logic and want
to make inferences based on what we know. We will deal with a simple setting, where
we only have three objects in the world: Alice, Carol, and Bob. Our predicates are as
follows:

Employee(x): x is an employee.

Boss(x): x is a boss.
Works(x): x works.
Paid(x): x gets paid.

The knowledge base we have constructed consists of the following propositions:
(a) Boss(Carol)

(b) Employee(Bob)

(c) Paid(Carol) A Works(Carol)

(d) Paid(Alice)

(e) Vz (Employee(x) <> — Boss(x))

(f) Vz (Employee(x) — Works(x))

(g) Vz ((Paid(x) A - Works(x)) — Boss(x))

Stanford University 65



Logic Problem

(i) |2 Point] We know from class that one technique we can use to perform infer-
ence with our knowledge base is to propositionalize the statements of first-order
logic into statements of propositional logic. Practice this by propositionalizing
statement (6) from our knowledge base.

Vz (Employee(x) — Works(x))
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Logic Problem

(i) |2 Point] We know from class that one technique we can use to perform infer-
ence with our knowledge base is to propositionalize the statements of first-order
logic into statements of propositional logic. Practice this by propositionalizing
statement (6) from our knowledge base.

Vz (Employee(x) — Works(x))
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Logic Problem

(ii) [3 Points| If we translated the statement "Anyone who is not a boss either works
or does not get paid" into first-order logic and added it to our knowledge base,
how would the size of the set of valid models representing our knowledge base
change, and why?

The knowledge base we have constructed consists of the following propositions:

b) Employee(Bob)

Paid(Carol) A Works(Carol)

Paid(Alice)

Vz (Employee(x) ¢+ - Boss(x))

¥z (Employee(x) — Works(x))

Vr ((Paid(x) A -~ Works(x)) — Boss(x))

(a) Boss(Carol)
)

(b)
(¢
(d)
(e)
f)
(8)

Stanford University 68



Logic Problem

(iii) |7 Points| Using only our original knowledge base (not including the statement
from part (ii)), we want to answer the question "Does everyone work?" We first
translate the sentence "everyone works" into first order logic as statement f.
Determine the answer to our query by considering the following questions of sat-

isfiability:

(D [3 points| Is KB U —f satisfiable? Answer yes/no. If yes, fill in the following
table with T for true and F for false to show that there is a satisfying model.

X

Employee(x)

Boss(x)

Works(x)

Paid(x)

Alice

Bob

Carol
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Logic Problem

2) [3 points| Is KB U f satisfiable? Answer yes/no. If yes, fill in the following
table with T for true and F for false to show that there is a satisfying model.

x | Employee(x) | Boss(x) | Works(x) | Paid(x)
Alice
Bob
Carol
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Logic Problem

@) |1 points| Based on your answers to the previous two parts, does our knowl-
edge base entail f, contradict f, or is f contingent? And what should the
answer to our original question "Does everyone work?" be?

Stanford University 71



Thank you!

Good luck on the exam!
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