CS221 Problem Workout Solutions

Week 1

1) Problem 1: Gradient and Gradient Descent

(i) Let ¢(z) : R — R4 w € R% Consider the following objective function (a.k.a.
loss function).

1=2(w-o(x))y if (W-o(x))y <0
Loss(z,y,w) = ¢ (1 — (wW- ¢(x))y)* if 0 < (w-¢(x))y <1
0 if (w-o(z))y > 1,

where y € R. Compute the gradient Vy,Loss(z,y, w).

Solution We apply the rules to compute the gradient for each case separately, leading
to the following piece-wise function for the gradient.

—2¢(z)y if (w-¢(z))y <0
VaLoss(z, 4, w) = { ~2(1 - (w - p(e)y)é@)y H0< (w o)y <1 (1)
0 if (w-o(x))y >1

(ii) Write out the Gradient Descent update rule for some function TrainLoss(w) : R¢ —
R.

Solution w :=w — 1V TrainLoss(w), where 7 is the step size.

(iii) Let d = 2 and ¢(x) = [1,x]. Consider the following loss function.
1
TrainLoss(w) = 5 <Loss(x1, y1, W) + Loss(z2, ya, w)) (2)
Compute V,, TrainLoss(w) for the following values of 1, y1, 22, Y2, W.
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Solution
1
V. TrainLoss(w) = §VW (Loss(:cl, y1, W) + Loss(z2, ya, W))
1 1
= §VWLOSS(ZL”1, Y1, W) + §VWLOSS($2, Yo, W)

For each of the terms above, we plug in the expression for the gradient computed in
part (i) above.

Term one. Note that ¢(x;) = [1,—2]. Since (w - ¢(x1))yn = —1, we consider the
first piece (Case 1) in the gradient expression (Equation 1). We have

VwLoss(z1,y1, W) = —2¢(x1)y1
= [-2,4]. (3)

Term two. Note that ¢(z2) = [1, —1]. Similarly, (w-¢(z2))y» = 5 taking us to Case
2 so

VwLoss(2s, 42, W) = =2(1 — (W - ¢(2))y2) #(2)
= [1,—1]. (4)

Combining the terms,

V4, TrainLoss(w) — %([—2, 4+ [1,-1])
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(iv) Perform two iterations of Gradient Descent to minimize the objective function
TrainLoss(w) = %(Loss(ml,yl,w) + Loss(xg,yg,w)) with values for zq,y;, 22,1y, as
1 1

above. Use initialization w® = [O, 5} and step size n = 3.

Solution Note that we have already computed V TrainLoss(w) at the initialization
point w’ in the question above.

w! = w’ — nV, TrainLoss(w) at w"
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Now we need to compute VyLoss(xy, 11, w) and V. Loss(za, y2, W) at the new iterate
1

W

We repeat the process we did for (iii) by applying the piece-wise defined gradient

(Equation 1) to the two points, this time setting w = w'.

Term one. Since (W' - ¢(z1))y1 = 3, we have Vy,Loss(z1,y1,w) = —2(1 — (w!-

¢(x1))y1)p(x1)yn = [—3,1]. Note that we are now in Case 2 with respect to the
piecewise definition of the gradient (Equation 1). When computing Vy,Loss(x1, y1, w)
at w', we were in Case 1.

Term two. (W' - ¢(z2))ys = —% taking us to Case 1, so VyLoss(za,y2, W) =

Hence,

w? = w' — nV, TrainLoss(w) at w'
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2) Problem 2: Gradient computation

(i) Let ¢(x) : R — RY w € RY and f(z,w) = w - ¢(z). Consider the following loss
function.

Loss(z,y,w) = %max{2 — (w-¢(x))y, 0}2 (6)

Compute its gradient VLoss(z,y, w).

Solution Note that Loss(x,y, w) can be written as the following piecewise defined
function using the definition of max.

12— (w-ola)y)? if2—(w-o(z))y >0

0 otherwise.

Loss(z,y, w) = { (7)

Using the chain rule, we get that the gradient is:

—2-w-o(x)y)d(z)y if2—w-o(x)y =0

0 otherwise.

VwLoss(z,y,w) = { (8)



3) Problem 3: Vector visualization
Recall that we can visualize a vector w € R? as a point in d-dimensional space. Let
us now visualize some vectors in 2 dimensions on pen and paper.

(i) Consider x € R?. Draw the line (i.e. the “decision boundary”) that separates
between vectors having a positive dot product with weights w = [3, —2] and those
having a negative dot product. Shade the part of the 2D plane that contains vectors
satisfying w - x > 0.

Hint: It might help to write out the expression for the dot product and seeing the
relation between x; and x5 that leads to a positive dot product. You could also use
the geometric interpretation of the dot product.

Solution w-x=3z; — 229 >0
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(i) Repeat the above for w = [2,0] and w = [0, 2].

Solution When w = [2,0], w-x = 2z; >0
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When w = [0,2], w - x = 225 > 0

I

—2




(iii) A small twist: visualize the set of vectors where w - x > 1 for w = [3, —2].

Solution w-x=3r; —219>1,803x1 —225—12>0
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Note that we get a line that is parallel to the one in (i) but shifted by a certain amount.



(iv) Consider the following element-wise inequality notation. For two vectors a, b € R?,

Suppose we have a matrix A € R?*? and a vector b € R? as follows.

A= B _02] ;b =[1,0]. (10)

Visualize the set of vectors where Ax > b. Hint: A matrix vector product is a collection
of dot products, and the above set can be obtained by the intersection of two of the
sets constructed in the previous questions.

Solution Ax = [3z7 — 219, 221] > [1,0], so it’s the intersection of 327 — 2z5 > 1 and
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4) Problem 4: More gradient computations

(i) Compute the gradient of the loss function below.
Loss(z,y, w) = o(—=(w - ¢(2))y), (11)
where o(z) = (1 4+ exp(—=2))~! is the logistic function.

Solution Let z = (—=w - ¢())y, then Loss(z,y, w) = o(2) = (1 + exp(—2)) .
Applying the chain rule, we get

Jo(z)

VwLoss(z,y,w) = 5 Vwz (12)
= —(L+exp(—2)) " exp(—2)y¢(x) (13)
i exp —z

=~ (=)™ (1) w0 (14)
= —0(2)(1 = o(2))yo(x). (15)

Plugging in the expression for z gives us the final expression.
VwLoss(z,y, w) = —o(=(w - ¢(x))y)(1 — o(=(w - ¢(2))y))yo(z). (16)

(ii) Suppose we have the following loss function.

LOSS<£U7 Y, W) = maX{l - L(W ’ (b(x))yj ) O}a (17)

where |a] returns a rounded down to the nearest integer. Determine what the gradient
of this function looks like, and whether gradient descent is suitable to optimize this
loss function.

Solution

L= [(w-ox)y] if [(w-o(x))y] <1,

0 otherwise

Loss(x,y,w) = { (18)

If we draw the plot for the floor function, we can see that its derivative is 0 (the lines
are flat and the slope is 0) almost everywhere.



Thus, when applying chain rule to find the gradient of Loss(z,y, w), the computed
gradient will also be 0 almost everywhere, so gradient descent is not suitable to optimize
this function as the iterates would not move from the point of initialization.
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