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Introduction
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Last Week: 3 Design Decisions in ML

Example: linear regression 

1. Define a model:

2a. Define a loss function for each example:

2b. Decide how to aggregate the per-example losses:

3. Use GD / SGD to compute w:



This Week: Key Takeaways

Example: linear regression, 

1. Define a model:

2a. Define a loss function for each example:

2b. Decide how to aggregate the per-example losses:

3. Use GD / SGD to compute w:

What is      ? How can we get 
non-linear decision boundaries?

What are the fairness implications 
of minimizing the average group 
loss? What about the maximum 
group loss?

Can we break down the steps of taking 
gradients s.t. we can write algorithms 
(e.g. backpropagation) to automatically 
compute gradients for us?



Nonlinear Features



Motivation: Linear Classification



Motivation: Linear Classification



Motivation: Linear Classification



The Non-Linear Feature Map can be anything!



Problem 2: 

x=-1 x=0 x=1

Legend:      y=+1      y=-1

x=-1 x=0 x=1



Try a 1-Dimensional Feature Function

x=-1 x=0 x=1

Legend:      y=+1      y=-1

x=-1 x=0 x=1



x=-1 x=0 x=1

x=-1 x=0 x=1

Legend:      y=+1      y=-1Need at least a Two-Dimensional Feature



x=-1 x=0 x=1

1
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Legend:      y=+1      y=-1Many Solutions!



1

1

Legend:      y=+1      y=-1Many Solutions!

x=-1 x=0 x=1



● Given pairs: 

● Design a feature map      such that we can classify

for some weight vector 

● Note: We never said that this has to be a good feature map!

Linearly Separating EVERY Dataset – is it possible?



Linearly Separating EVERY Dataset – is it possible?

And use w = 1. This is “memorizing the training set.”

Moral of the story: 100% train accuracy != good test accuracy!



More Practice

● The (optional) Problem 4 from this Problem Session

● Problem 1b on the HW 2



Backpropagation



Drawing a Computational Graph

Preparation:

● Write every function f(a, b, …) as a vertex with one incoming edge per input 

variable.

● Write down the gradients (green) of f with respect to each input (a,b) as functions of 

(a,b) along each respective edge.



Drawing a Computational Graph

Review from Lecture:



Problem 3



Problem 3

Step 1: Draw a computational graph for the function:



Next Step: Forward Pass

a = 3

b = 9

c = 81

Step 2: After getting your data, flow up the graph and compute values at each 

function node (in yellow) based on the input(s) from the incoming edge(s).

Example:



Problem 3

Step 2: After getting your data, flow up the graph and compute values at each 

function node (in yellow) based on the input(s) from the incoming edge(s).



a = 3

b = 9

c = 81

dc/db = 2(9) = 18

dc/da = 18 x db/da =  18 x 2(3) = 18 x 6 = 108

Next Step: Backward Pass for the Gradients

Step 2: Flow down the graph now and compute your gradients (in purple) 

based on the input(s) from the incoming edge(s) and the chain rule.

Example:



What are each of the following?
● dLoss/dx
● dLoss/dy
● dLoss/dw
● dLoss/dz

Problem 3

Step 2: Flow down the graph now and compute your gradients (in purple) 

based on the input(s) from the incoming edge(s) and the chain rule.



Problem 3



K-Means Clustering



K-Means

● K-Means is an unsupervised algorithm to split data points into K clusters.

● We want to minimize the sum of distances from each point to its assigned centroid.

Example: 2-Means for 4 data points (in red)

●
Initialize random centroids (in purple)

For each point, assign to the closest centroid

Move the centroids to min sum of distances



K-Means

● K-Means is an unsupervised algorithm to split data points into K clusters.

● We want to minimize the sum of distances from each point to its assigned centroid.

Example: 2-Means for 4 data points (in red)

●

Repeat until the clusters no longer change

The 3rd point from the left changes clusters

in the end!



Problem 5

-2 0 10



Things to Consider when doing K-Means

● More clusters = lower loss

meaning… if one centroid gets set to infinity and all 3 points end in the same 

cluster, then we miss the global optimum!

● So we need 2 clusters in the end – which points have to end up in different clusters?

-2 0 10



Things to Consider when doing K-Means

● More clusters = lower loss

meaning… if all 3 points end in the same cluster, then we miss the global optimum!

● So we need 2 clusters in the end – which points have to end up in different clusters?

-2 and 10 must end up in different clusters

Consider the following (random) clusters

● What about point 0?

-2 0 10

-2 0 10



Problem 5

-2 0 10

● What about point 0?

● 0 can be assigned to either cluster, and it’ll work out!

● Consider what happens if -2 and 0 are assigned to the same cluster…

Cluster1 would end at -1, and Cluster2 would end at 10.

No change would happen on the second pass.

● Consider what happens if 0 and 10 are assigned to the same cluster…

-2 0 10



Problem 5
● Consider what happens if 0 and 10 are assigned to the same cluster…

When the clusters move to minimize the sum of distances, we get

Cluster1 at -2 and Cluster2 at 5 (halfway between 0 and 10):

But, on the next pass, 0 gets assigned to Cluster1 because it’s closer, leading to

Cluster1 at -1 and Cluster2 at 10 (the same result as the other case!)

-2 0 10

-2 0 10

-2 0 10



Problem 5

● At the end of the day, the key observation was that -2 and 10 needed to be

assigned to different clusters.

● This condition on the initial assignments of -2 and 10 can be formally written as

that is, the initial positions of the two clusters have to be such that:

-2 is initially closer to Cluster1 than Cluster2

10 is initially closer to Cluster2 than Cluster1

-2 0 10



Final Questions?




