
CS221 Problem Workout
Week 3

Search Problems

● Need to define:
○ States

■ Start State
○ Actions
○ Goals
○ Costs
○ Successors

2

Objective?

Find a sequence of actions such
that cost is minimized

States

● A state space contains all the possible
configurations of the system.

● Each state tells you everything you need to know
about “where you are” towards reaching your goal.

Image Credit: Khan Academy

3

States

● A state space contains all the possible
configurations of the system.

● Each state tells you everything you need to know
about “where you are” towards reaching your goal.

● Ex) Trying to visit every Coupa Cafe on campus.
○ State = (longitude, latitude, visitedY2E2?,

visitedGSB?, visitedGreenLibrary?, …)

Image Credit: Khan Academy

4

States

● A state space contains all the possible
configurations of the system.

● Each state tells you everything you need to know
about “where you are” towards reaching your goal.

● Ex) Trying to visit every Coupa Cafe on campus.
○ State = (longitude, latitude, visitedY2E2?,

visitedGSB?, visitedGreenLibrary?, …)

● Ex) Trying to solve towers of Hanoi
○ State = position and ordering of each of the

blocks

Image Credit: Khan Academy

5

Actions

● The action space describes all the possible things
you can do to move from one state to another

● Ex) Trying to visit every Coupa Cafe on campus.
○ Walk North, Walk South, Walk East, Walk

West, take the Margueritte from stop A to
stop B, etc.

● Ex) Trying to solve towers of Hanoi
○ Move block from one pole to another

Image Credit: Khan Academy

6

Goals

● The goals decide what the end state of your search
is.

● Possible to have more than one valid goal state.

● Ex) Trying to visit every Coupa Cafe on campus.
○ Visited every Coupa Cafe on campus

● Ex) Trying to solve towers of Hanoi
○ All blocks in ascending order by size on the

final pole

Image Credit: Khan Academy

7

Costs
● The costs assign a “price” to each action you take.

● Some search algorithms break under negative costs
○ BFS
○ UCS
○ A*

● Controls what you are optimizing for in the search

● Ex) Trying to visit every Coupa Cafe on campus.
○ Option 1: How long it will take to do an

action (ex. 10 minutes on the marguerite)
○ Option 2: How far is the distance (ex. walk

100 meters north)
○ Option 3: Monetary cost (ex. $3 clipper card

fare)

● Ex) Trying to solve towers of Hanoi
○ Can assign uniform cost to each action Image Credit: Khan Academy

8

Successors
● Defines the new state you are in from a current

state after taking an action

● Successor(state, action) => new_state

● Ex) Trying to visit every Coupa Cafe on campus.
○ New longitude, New latitude, visitedY2E2?,

visitedGSB?, visitedGreenLibrary?, ...

● Ex) Trying to solve towers of Hanoi
○ New order and positions of the blocks after

the movement of a block

Image Credit: Khan Academy

9

How can we solve search problems?

Search

Tree search (NO
cycles in state

space)

Graph search
(potentially HAS

cycles)

A* (UCS +
consistent
heuristic)

UCS
(non negative cost)

Dynamic
programming

(polynomial time)

Exponential time
● Backtracking
● DFS (0 cost)
● BFS (constant cost)
● DFS with iterative

deepening (constant cost)

Checkout https://stanford.edu/~shervine/teaching/cs-221/cheatsheet-states-models for visualizations!

https://stanford.edu/~shervine/teaching/cs-221/cheatsheet-states-models

Backtracking Search

11

Start

Goal

Backtracking Search

12

Start

Goal

Depth First Search

13

Start

Goal

Depth First Search

14

Start

Goal

Breadth First Search

15

Start

Goal

Breadth First Search

16

Start

Goal

Iterative Deepening Depth First Search

17

Start

Goal

Iterative Deepening Depth First Search

18

Start

Goal

Dynamic Programming
● An algorithm that is akin to backtracking search with memoization and potentially

exponential savings!

● The states in DP contain a summary of past actions sufficient to choose future
actions optimally.

Backtracking (tree) Dynamic Programming (graph)

19

Dynamic Programming Example
● Grid Dimensions: The grid dimensions are m (rows) and n (columns)

● Movement Constraints: Wall-E can only move either down or to the right at any given point. It cannot
move diagonally or backwards.

● Problem: find the number of unique paths the Wall-E can take to get home.

20

?

(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

(2, 0) (2, 1) (2, 2)

Dynamic Programming Example
● Nodes: each cell is a node on the graph

● Edges: each edge is a possible path for the robot.

● Ideas and Intuition: ?

21

(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

(2, 0) (2, 1) (2, 2)

Dynamic Programming Example
● Ideas and Intuition: use a 2D array to store the number of unique paths to each cell. A cell (i,j) can be

reached either from (i−1,j) or (i,j−1), and thus the number of unique paths to (i,j) is the sum of the
number of unique paths to these two cells.

1

22

Original Grid Dynamic Programming 2D array

(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

(2, 0) (2, 1) (2, 2)

Dynamic Programming Example
● Ideas and Intuition: use a 2D array to store the number of unique paths to each cell. A cell (i,j) can be

reached either from (i−1,j) or (i,j−1), and thus the number of unique paths to (i,j) is the sum of the
number of unique paths to these two cells.

1 1 1

1 1 + 1 = 2 1 + 2

1 1 + 2 = 3 3 + 3 = 6

Original Grid

23

Dynamic Programming 2D array

Dynamic Programming Example
● Ideas and Intuition: use a 2D array to store the number of unique paths to each cell. A cell (i,j) can be

reached either from (i−1,j) or (i,j−1), and thus the number of unique paths to (i,j) is the sum of the
number of unique paths to these two cells.

24

DP does not work if there are cycles

- DP requires the search tree to be a Directed Acyclic Graph (DAG)
- This is because we need an ordering to fill out the entries in the memo;

otherwise, we would not know where to start!

Bad

Uniform Cost Search

Explored
Frontier
Unexplored

Uniform Cost Search

UCS - Pseudocode (from lecture slides)

UCS - Proof of Correctness

UCS - Proof of Correctness

UCS - Proof of Correctness

UCS - Proof of Correctness

Contradiction!

UCS does not work if there are negative edges

Middle

Start End

5

1

-10

- Optimal: start -> middle -> end with a cost of -5
- UCS finds: start -> end with a cost of 1
- Always try to come up with your own examples

- The simpler the example, the better!

Problem (1a)
● Describe A:

● s
start

=

● Actions((x,y,A)) = {N,S,E,W}

● Succ((x,y,A),a) =

● Cost((x,y,A),a) =

● IsGoal((x,y,A)) =

34

Problem (1b)

35

Looking Ahead: Heuristics

Image Credit: Cleveland.com

36

A*: UCS with heuristics

- A* is an expansion of UCS, but we use an estimate of “future cost”
- This should give us a better estimate of total cost to END = past cost + future cost

- Leads to more efficient search!

Requirements of a good heuristic for A*:
- h(Succ(s, a)) - h(s) should a measurement of whether we are getting closer to END
- We will run UCS on the new costs, so the new costs have to be non-negative

Consistent Heuristic

- We will run UCS on the new costs, so the new costs have to be non-negative

- If the new costs are non-negative, UCS would return the correct result

Problem (1c)

39

Problem (2a)

40

Problem (2b)

41

Thank You
42

Come to our office hours!

43

Joey O’Brien

 HW OH: Tuesdays 9:00am to 10:30am Huang Basement + Zoom
General OH: Thursday 12:50pm to 2:20pm Huang Basement

Jeremy Kim

HW OH: Fridays 11:00am-12:30pm Huang
HW OH: Sundays 2:00pm-3:30pm Online

