
CS221 Problem Workout
Week 3



Search Problems

● Need to define:
○ States

■ Start State
○ Actions
○ Goals
○ Costs
○ Successors
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Objective?

Find a sequence of actions such 
that cost is minimized



States

● A state space contains all the possible 
configurations of the system.

● Each state tells you everything you need to know 
about “where you are” towards reaching your goal.

Image Credit: Khan Academy
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States

● A state space contains all the possible 
configurations of the system.

● Each state tells you everything you need to know 
about “where you are” towards reaching your goal.

● Ex) Trying to visit every Coupa Cafe on campus.
○ State = (longitude, latitude, visitedY2E2?, 

visitedGSB?, visitedGreenLibrary?, …)

Image Credit: Khan Academy
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States

● A state space contains all the possible 
configurations of the system.

● Each state tells you everything you need to know 
about “where you are” towards reaching your goal.

● Ex) Trying to visit every Coupa Cafe on campus.
○ State = (longitude, latitude, visitedY2E2?, 

visitedGSB?, visitedGreenLibrary?, …)

● Ex) Trying to solve towers of Hanoi
○ State = position and ordering of each of the 

blocks

Image Credit: Khan Academy
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Actions

● The action space describes all the possible things 
you can do to move from one state to another

● Ex) Trying to visit every Coupa Cafe on campus.
○ Walk North, Walk South, Walk East, Walk 

West, take the Margueritte from stop A to 
stop B, etc.

● Ex) Trying to solve towers of Hanoi
○ Move block from one pole to another

Image Credit: Khan Academy
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Goals

● The goals decide what the end state of your search 
is.

● Possible to have more than one valid goal state.

● Ex) Trying to visit every Coupa Cafe on campus.
○ Visited every Coupa Cafe on campus

● Ex) Trying to solve towers of Hanoi
○ All blocks in ascending order by size on the 

final pole

Image Credit: Khan Academy
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Costs
● The costs assign a “price” to each action you take.

● Some search algorithms break under negative costs
○ BFS
○ UCS
○ A*

● Controls what you are optimizing for in the search

● Ex) Trying to visit every Coupa Cafe on campus.
○ Option 1: How long it will take to do an 

action (ex. 10 minutes on the marguerite)
○ Option 2: How far is the distance (ex. walk 

100 meters north)
○ Option 3: Monetary cost (ex. $3 clipper card 

fare)

● Ex) Trying to solve towers of Hanoi
○ Can assign uniform cost to each action Image Credit: Khan Academy
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Successors
● Defines the new state you are in from a current 

state after taking an action

● Successor(state, action) => new_state

● Ex) Trying to visit every Coupa Cafe on campus.
○ New longitude, New latitude, visitedY2E2?, 

visitedGSB?, visitedGreenLibrary?, ...

● Ex) Trying to solve towers of Hanoi
○ New order and positions of the blocks after 

the movement of a block

Image Credit: Khan Academy
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How can we solve search problems?

Search

Tree search (NO 
cycles in state 

space)

Graph search 
(potentially HAS 

cycles)

A* (UCS + 
consistent 
heuristic)

UCS
(non negative cost)

Dynamic 
programming 

(polynomial time)

Exponential time
● Backtracking
● DFS (0 cost)
● BFS (constant cost)
● DFS with iterative 

deepening (constant cost)

Checkout https://stanford.edu/~shervine/teaching/cs-221/cheatsheet-states-models for visualizations!

https://stanford.edu/~shervine/teaching/cs-221/cheatsheet-states-models


Backtracking Search
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Start
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Backtracking Search
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Depth First Search
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Depth First Search
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Breadth First Search
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Start

Goal



Breadth First Search
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Start

Goal



Iterative Deepening Depth First Search
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Start

Goal



Iterative Deepening Depth First Search
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Start

Goal



Dynamic Programming
● An algorithm that is akin to backtracking search with memoization and potentially 

exponential savings!

● The states in DP contain a summary of past actions sufficient to choose future 
actions optimally.

Backtracking (tree) Dynamic Programming (graph)
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Dynamic Programming Example
● Grid Dimensions: The grid dimensions are m (rows) and n (columns)

● Movement Constraints: Wall-E can only move either down or to the right at any given point. It cannot 
move diagonally or backwards.

● Problem: find the number of unique paths the Wall-E can take to get home.

20

?



(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

(2, 0) (2, 1) (2, 2)

Dynamic Programming Example
● Nodes: each cell is a node on the graph

● Edges: each edge is a possible path for the robot.

● Ideas and Intuition: ?
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(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

(2, 0) (2, 1) (2, 2)

Dynamic Programming Example
● Ideas and Intuition: use a 2D array to store the number of unique paths to each cell. A cell (i,j) can be 

reached either from (i−1,j) or (i,j−1), and thus the number of unique paths to (i,j) is the sum of the 
number of unique paths to these two cells.

1
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Original Grid Dynamic Programming 2D array



(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

(2, 0) (2, 1) (2, 2)

Dynamic Programming Example
● Ideas and Intuition: use a 2D array to store the number of unique paths to each cell. A cell (i,j) can be 

reached either from (i−1,j) or (i,j−1), and thus the number of unique paths to (i,j) is the sum of the 
number of unique paths to these two cells.

1 1 1

1 1 + 1 = 2 1 + 2

1 1 + 2 = 3 3 + 3 = 6

Original Grid
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Dynamic Programming 2D array



Dynamic Programming Example
● Ideas and Intuition: use a 2D array to store the number of unique paths to each cell. A cell (i,j) can be 

reached either from (i−1,j) or (i,j−1), and thus the number of unique paths to (i,j) is the sum of the 
number of unique paths to these two cells.
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DP does not work if there are cycles

- DP requires the search tree to be a Directed Acyclic Graph (DAG)
- This is because we need an ordering to fill out the entries in the memo; 

otherwise, we would not know where to start!

Bad



Uniform Cost Search

Explored
Frontier
Unexplored



Uniform Cost Search



UCS - Pseudocode (from lecture slides)



UCS - Proof of Correctness



UCS - Proof of Correctness



UCS - Proof of Correctness



UCS - Proof of Correctness

Contradiction!



UCS does not work if there are negative edges

Middle

Start End

5

1

-10

- Optimal: start -> middle -> end with a cost of -5
- UCS finds: start -> end with a cost of 1
- Always try to come up with your own examples

- The simpler the example, the better!



Problem (1a)
● Describe A: 

● s
start 

= 

● Actions((x,y,A)) = {N,S,E,W}

● Succ((x,y,A),a) = 

● Cost((x,y,A),a) = 

● IsGoal((x,y,A)) = 
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Problem (1b)
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Looking Ahead: Heuristics

Image Credit: Cleveland.com
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A*: UCS with heuristics

- A* is an expansion of UCS, but we use an estimate of “future cost” 
- This should give us a better estimate of total cost to END = past cost + future cost

- Leads to more efficient search!

Requirements of a good heuristic for A*:
- h(Succ(s, a)) - h(s) should a measurement of whether we are getting closer to END
- We will run UCS on the new costs, so the new costs have to be non-negative



Consistent Heuristic

- We will run UCS on the new costs, so the new costs have to be non-negative

- If the new costs are non-negative, UCS would return the correct result



Problem (1c)
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Problem (2a)
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Problem (2b)
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Thank You
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Come to our office hours!
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Joey O’Brien

     HW OH: Tuesdays        9:00am to 10:30am Huang Basement + Zoom
General OH: Thursday     12:50pm to 2:20pm Huang Basement 

Jeremy Kim

HW OH: Fridays         11:00am-12:30pm  Huang
HW OH: Sundays       2:00pm-3:30pm Online


