
CS221 Problem Workout
Week 5

Zero Sum Turn Based Games

2

● Zero Sum (Adversarial)
○ Only one player can win
○ One player loses by the amount

the other player wins
● Turn based

○ Only one player takes an action
at a time

Image Credit: Chess.com

http://chess.com

Game Tree

3

● In order to reason about games we
make a Game Tree

● Enumerate all the possible actions by
a given player on their turn

● Allows us to compute expected value
of the game based on players policies

Image Credit: USC

https://viterbi-web.usc.edu/~adamchik/15-121/lectures/Game%20Trees/Game%20Trees.html

Game Tree

4

● Helps to represent players based on their
policy

● = Probabilistic

● = Maximizer

● = Minimizer

● It is important to consider that a minimizer
player is “maximizing” the opponent reward
(their reward) in a zero sum game!

0.5 0.5 0.2 0.8

Finding Optimal Policy

5

● We need to evaluate the expected utility of
each game state

● Depending on the game we can use:
○ Expectimax: Fixed Random Opponent
○ Minimax: Minimizer Opponent
○ Expectiminimax: Minimizer Opponent

with randomness in the game

Image Credit: UC Berkeley

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/slides/archive/SP18-CS188%20Lecture%207%20--%20Expectimax%20Search%20and%20Utilities.pdf

Finding Optimal Policy

6

● We need to evaluate the expected utility of
each game state

● Depending on the game we can use:
○ Expectimax: Fixed Random Opponent
○ Minimax: Minimizer Opponent
○ Expectiminimax: Minimizer Opponent

with randomness in the game

Image Credit: UC Berkeley

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/slides/archive/SP18-CS188%20Lecture%207%20--%20Expectimax%20Search%20and%20Utilities.pdf

Improve Efficiency: Evaluation Functions

7

● Sometimes we can’t possibly enumerate the whole search tree

● We can perform a depth limited search to a certain depth in the tree

● We can then define Eval(s) functions which take in a state and return a predicted
value of that state

Improve Efficiency: Alpha Beta Pruning

8

a_s: lower bound on the value that a max
node can contribute upwards
(increases with updates)

alpha_s: maximum a that we know of
from currNode to root

b_s: upper bound on the value that a
min node can contribute upwards
(decreases with updates)

beta_s: minimum b that we know of
from currNode to root

A max node only has a chance of being on the optimal path if a_s ≤ beta_s
- “My value will be at least a_s, my min ancestors will let through at most beta_s”

If we see a max node where a_s > beta_s: we can prune all of its unexplored children!
- Exploring more children will only increase the max node’s value, which is already not

feasible through the min ancestors

Work this out for min nodes!

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

