
CS221 Problem Workout
Week 5



Zero Sum Turn Based Games
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● Zero Sum (Adversarial)
○ Only one player can win
○ One player loses by the amount 

the other player wins
● Turn based

○ Only one player takes an action 
at a time

Image Credit: Chess.com

http://chess.com


Game Tree
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● In order to reason about games we 
make a Game Tree

● Enumerate all the possible actions by 
a given player on their turn

● Allows us to compute expected value 
of the game based on players policies

Image Credit: USC

https://viterbi-web.usc.edu/~adamchik/15-121/lectures/Game%20Trees/Game%20Trees.html


Game Tree
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● Helps to represent players based on their 
policy

●               = Probabilistic

●              = Maximizer

●              = Minimizer

● It is important to consider that a minimizer 
player is “maximizing” the opponent reward 
(their reward) in a zero sum game! 
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Finding Optimal Policy
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● We need to evaluate the expected utility of 
each game state

● Depending on the game we can use:
○ Expectimax: Fixed Random Opponent
○ Minimax: Minimizer Opponent
○ Expectiminimax: Minimizer Opponent 

with randomness in the game

Image Credit: UC Berkeley

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/slides/archive/SP18-CS188%20Lecture%207%20--%20Expectimax%20Search%20and%20Utilities.pdf
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Improve Efficiency: Evaluation Functions
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● Sometimes we can’t possibly enumerate the whole search tree

● We can perform a depth limited search to a certain depth in the tree

● We can then define Eval(s) functions which take in a state and return a predicted 
value of that state



Improve Efficiency: Alpha Beta Pruning
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a_s: lower bound on the value that a max 
node can contribute upwards
(increases with updates)

alpha_s: maximum a that we know of 
from currNode to root

b_s: upper bound on the value that a 
min node can contribute upwards
(decreases with updates)

beta_s: minimum b that we know of 
from currNode to root

A max node only has a chance of being on the optimal path if a_s ≤ beta_s
- “My value will be at least a_s, my min ancestors will let through at most beta_s”

If we see a max node where a_s > beta_s: we can prune all of its unexplored children!
- Exploring more children will only increase the max node’s value, which is already not 

feasible through the min ancestors

Work this out for min nodes!
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