CS221 Problem Workout

Week 5
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Zero Sum Turn Based Games

® Zero Sum (Adversarial)
o  Only one player can win
o One player loses by the amount
the other player wins
® Turn based
o Only one player takes an action
at a time

Image Credit: Chess.com
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http://chess.com

Game Tree

® |n order to reason about games we
make a Game Tree

® Enumerate all the possible actions by
a given player on their turn

® Allows us to compute expected value
of the game based on players policies
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https://viterbi-web.usc.edu/~adamchik/15-121/lectures/Game%20Trees/Game%20Trees.html

Game Tree

® Helps to represent players based on their
policy

° O = Probabilistic
° A = Maximizer

° v = Minimizer

e Itisimportant to consider that a minimizer
player is “maximizing” the opponent reward
(their reward) in a zero sum game!
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Finding Optimal Policy

® We need to evaluate the expected utility of
each game state

e Depending on the game we can use:
o Expectimax: Fixed Random Opponent
©  Minimax: Minimizer Opponent
o Expectiminimax: Minimizer Opponent
with randomness in the game
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https://inst.eecs.berkeley.edu/~cs188/fa19/assets/slides/archive/SP18-CS188%20Lecture%207%20--%20Expectimax%20Search%20and%20Utilities.pdf

Finding Optimal Policy

® We need to evaluate the expected utility of
each game state

e Depending on the game we can use:
o Expectimax: Fixed Random Opponent
©  Minimax: Minimizer Opponent
O Expectiminimax: Minimizer Opponent
with randomness in the game
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https://inst.eecs.berkeley.edu/~cs188/fa19/assets/slides/archive/SP18-CS188%20Lecture%207%20--%20Expectimax%20Search%20and%20Utilities.pdf

Improve Efficiency: Evaluation Functions

® Sometimes we can’t possibly enumerate the whole search tree
® We can perform a depth limited search to a certain depth in the tree

® \We can then define Eval(s) functions which take in a state and return a predicted
value of that state

Eval(s) = material + mobility + king-safety + center-control

material = 10'°(K — K')+9(Q — Q') +5(R— R') +
3(B—B' +N—-N')+1(P-P)

mobility = 0.1(num-legal-moves — num-legal-moves')
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Improve Efficiency: Alpha Beta Pruning

a_s: lower bound on the value that a max b_s: upper bound on the value that a
node can contribute upwards min node can contribute upwards
(increases with updates) (decreases with updates)

alpha_s: maximum a that we know of beta_s: minimum b that we know of
from currNode to root from currNode to root

A max node only has a chance of being on the optimal path if a_s < beta_s
- “My value will be at least a_s, my min ancestors will let through at most beta_s”

If we see a max node where a_s > beta_s: we can prune all of its unexplored children!
- Exploring more children will only increase the max node’s value, which is already not
feasible through the min ancestors

Work this out for min nodes!
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2) “I am the Lorax who speaks for the [game] trees, which you seem to be
[alpha-beta pruning] as fast as you please!” - The Lorax

(a) Evaluate the following game (Figure 1) where the edges are probabilities:

Pretend the top node is now a maximizing player. Under expectimax which action
should they take (left, center, or right) and what is the value of the game.
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(b) Evaluate the game in Figure 2 using the minimax strategies for both players,
with £ = —5. Recall that upwards pointing triangles is the maximizing player
and downwards pointing is the minimizing player.

Can we pick z so that the maximizing player loses? Why or why not.

(c) Can either player do better by deviating from minimax assuming the other stays?

Stanford University 1



(d) Evaluate the game in Figure 3 under the expectiminimax strategy, using x = —5.
Write down a funny answer for who the third player playing the circles is.

/ \
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(0.8) (0.2) (0.5) (0.5) (0.2) (0.8)

Figure 3
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(e) In the previous problem, is there a value of z we can choose so that the game
does not end in a draw?

(f) Assume that in the case of a tie in the value of multiple options, the maximizing
player chooses the rightmost tied-value action. Still referring to (d) and Figure 3

with x = —5, explain, in your own words, why expectiminimax always chooses to
draw the game given this choice of tie-breaking. Is there a better way of breaking
ties?

Stanford University 13



Problem 1: General ML Review

Problem 1: General ML Review
“Linear Regression” with Feature Maps
Linear Classification Decision Boundaries
Loss Functions
Backpropagation
Reusing Derivatives

Regularization

Stanford University
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Problem 1: General ML Review

“Linear Regression” with Feature Maps
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“Linear Regression” with Feature Maps

We have a trained linear regression model f,(x) = w - ¢(x). In
your own words, explain why we call this model “linear”. Is it
linear in x? Linear in ¢(x)? Linear in w? Note that linearity for
some generic function g means that g(x + y) = g(x) + g(y) and
g(ax) = ag(x) for all parameters a.

Stanford University 16



“Linear Regression” with Feature Maps

We have a trained linear regression model fy(x) = w - ¢(x). In
your own words, explain why we call this model “linear”. Is it
linear in x? Linear in ¢(x)? Linear in w? Note that linearity for
some generic function g means that g(x + y) = g(x) + g(y) and
g(ax) = ag(x) for all parameters a.

e Is it linear in x? NO!
e Linear in ¢(x)? Yes

e Linear in w? Yes

Stanford University 17



“Linear Regression” with Feature Maps

We have a trained linear regression model fy(x) = w - ¢(x). In
your own words, explain why we call this model “linear”. Is it
linear in x? Linear in ¢(x)? Linear in w? Note that linearity for
some generic function g means that g(x + y) = g(x) + g(y) and
g(ax) = ag(x) for all parameters a.

e Is it linear in x? NO!
e Linear in ¢(x)? Yes

e Linear in w? Yes

Key Takeaway: Feature maps let us express / model non-linear

functions within linear regression!

Stanford University
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“Linear Regression” with Feature Maps

We have a trained linear regression model f,(x) = w - ¢(x).

e Is it linear in x? NO!
e Linear in ¢(x)? Yes
e Linear in w? Yes

Key Takeaway: Feature maps let us express non-linear functions

within linear classification models, e.g. quadratic features:
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Problem 1: General ML Review

Linear Classification Decision Boundaries
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Linear Classification Decision Boundaries

We are working with a classification model f,(x) = sign(w - ¢(x)).
What is the decision boundary? What does w - ¢(x)y = —1000
imply about how well our model classified the point (x, y)? What
does w - ¢(x)y = 0.1 imply about how well our model classified the
point (x,y)?

Stanford University
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Linear Classification Decision Boundaries

We are working with a classification model f,(x) = sign(w - ¢(x)).
What is the decision boundary?

Stanford University
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Linear Classification Decision Boundaries

We are working with a classification model f,(x) = sign(w - ¢(x)).
What is the decision boundary?
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Recall our definition: The decision boundary is w - ¢(x) = 0.
Key Takeaway: Decision boundaries let us separate data into
different groups!
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Linear Classification Decision Boundaries

We are working with a classification model f(x) = sign(w - ¢(x)).
What does w - ¢(x)y = —1000 imply about how well our model
classified the point (x, y)?

Stanford University
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Linear Classification Decision Boundaries

We are working with a classification model f,(x) = sign(w - ¢(x)).
What does w - ¢(x)y = —1000 imply about how well our model
classified the point (x, y)?
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Our model is confident in the classification (far from the decision

boundary), but incorrect in the classification (note the sign).

Stanford University
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Linear Classification Decision Boundaries

We are working with a classification model f,(x) = sign(w - ¢(x)).
What does w - ¢(x)y = 0.1 imply about how well our model

classified the point (x, y)?

Stanford University
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Linear Classification Decision Boundaries

We are working with a classification model f,(x) = sign(w - ¢(x)).
What does w - ¢(x)y = 0.1 imply about how well our model
classified the point (x, y)?
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Our model is not very confident in the classification (close to the

decision boundary), but correct in the classification (same signs).

Stanford University
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Problem 1: General ML Review

Loss Functions
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Loss Functions

Additionally, you consider using the following loss function

1[(w - ¢(x))y < 0]

for gradient descent. Explain why using this loss function is a bad
idea.

Stanford University
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Loss Functions

Additionally, you consider using the following loss function

1[(w - ¢(x))y < 0]

for gradient descent. Explain why using this loss function is a bad
idea.

This is the zero-one loss function, which has zero gradient almost
everywhere!

Key Takeaway: We want our loss function to have a meaningful

gradient for gradient descent!

Stanford University
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Loss Functions

After solving the prior problem, you realize the zero-one loss
function is a bad idea and instead decide to use the logistic loss
function. Your data is y € {0,+1}, so you define the logistic loss
as follows

L(x,y;w) = —ylog(f(x;w)) — (1 — y) log(1 — f(x; w))

where f has a range of [0, 1]. Before picking f, you'd like to

differentiate L with respect to w. Is this possible, and if so, what is

oL
S |

Stanford University
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Loss Functions

L(x,y;w) = —ylog(f(x;w)) — (1 — y) log(1 — f(x; w))

Yes! We use the chain rule:

OL(x,y;w) 1 Of(x;w) 1 Of (x; w)
ow __yf(x;w) ow +(1_)/)1—zc(x;w) ow
N < f(x;w)—y ) Of (x; w)
f(x;w)(1— f(x;w)) ow

Key Takeaway: Be prepared to take derivatives of any loss

function!

Stanford University
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Loss Functions

L(x,y;w) = —ylog(f(x;w)) — (1 — y)log(1 — f(x; w))

Yes! We use the chain rule:
OoL(x,y;,w 1 Of(x;w 1 of (x; w
(, ):—y : ( )+(1—y) _ ( )
ow f(x;w) Ow 1—-f(x;w) Ow

N ( f(x;w)—y ) of (x; w)
f(x;w)(1— f(x;w)) ow

(Food for thought: how would the derivative change if it were over

a summation?)

Stanford University



Loss Functions

L(x,y;w) = —ylog(f(x;w)) — (1 — y) log(1 — f(x; w))

Yes! We use the chain rule:

OL(x,y;,w 1 JOf(x;w 1 of (x;w
Coyiw) _ 1 0fGaw) 1 of(cw)
ow f(x;w) Ow 1—-f(x;w) Ow

: < f(x;w)—y ) Of (x; w)
f(x;w)(1— f(x;w)) ow

(Food for thought: how would the derivative change if it were over
a summation?)

Same process, just with indexing!

Stanford University
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Loss Functions

For your function f in the above loss function, you can't decide
between using the sigmoid function,

1

glxiw) = P

or the shifted tanh function,

eX —e X

1 1
Hocw) = jtanh(w'x) +5  with tanh(x) = s

in place of f. How would the derivative from Part (c) look like
with function g above in place of f, and with function h above in
place of 7

Stanford University
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Loss Functions

Sigmoid function,
1

XW)= ———
8( ) 11 e wix

Og(xiw)

's

ow

Stanford University
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Loss Functions

Sigmoid function,
1

XwW)=——
g( ) 11 e wix

0g(x;w) o —wx\=2 a —w'x
B e S

T

Xe*W X
— L o)y (this is a valid answer)
—
1 e—WTX

= X
(1 e e*WTX) (1 . e*WTX)

= xg(x;w)(1 — g(x; w))

Remember: o(w)(1 — a(w))%—“)‘(’ form to save time and work!

Stanford University
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Loss Functions

L(x,y;w) = —ylog(f(x;w)) — (1 — y)log(1 — f(x; w))

OL(x,y;w) _ ( f(x;w)—y ) of (x; w)
ow fGw)(1—f(x;w)) ow

For sigmoid g:

Stanford University
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Loss Functions

tanh function,

eX —e X

1 1
h(X, W) = 5 tanh(WTX) + 5 Wlth tanh(X) = m

Oh(x;w)  10tanh(w’x)
ow 2 ow
1 8 (ewa o e—wa)
2 0w (ew'x + e—w'x)
1 (eWTX 4. e—wa) (ewa 1, e—wa)2

- 5 (ewa il e—wa) a (ewa gl e—wa)2 <

1
= 2(1 — tanh(w 7 x)?)x

Stanford University
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Loss Functions

L(x,y;w) = —ylog(f(x;w)) — (1 — y) log(1 — f(x; w))
OL(x,y;w) _ ( f;w)—y ) Of (x; w)

ow fw)(1—f(x;w)) ow
For tanh h:
OL(x,y;w) ( h(x;w) — y > Oh(x; w)
ow w)(1 — h(x; w)) ow

~(1—tanh(w ' x)?)x

h(x;
_ h(x; w)
( (tanh(wTx) + 1)(1 — (tanh( )+1))) 5

h(x;w) —y )
((tanh(wa) +1)5(1 — tanh(wa))> (1-— tanh(WTx) )x

= 2x(h(x;w) — y)

N =
N = |

Stanford University 40
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Problem 1: General ML Review

Backpropagation
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Backpropagation

Explain why writing the derivative of the loss function in the form
of cx(f(x;w) — y) is very convenient for backpropagation.

Stanford University
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Backpropagation

Explain why writing the derivative of the loss function in the form
of cx(f(x; w) — y) is very convenient for backpropagation.

cx (F-y)

Very straightforward arithmetic operations involving known values!
Key Takeaway: Backpropagation breaks down derivatives into a

simple structure for a computer to do!

Stanford University
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Problem 1: General ML Review

Reusing Derivatives
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Reusing Derivatives

Unfortunately your model has poor performance for both sigmoid
and tanh. You decide to make your model a neural network to
hopefully fix that.

Let
N(x; A, B) = Bmax{Ax,0} =z

The loss function is now:

L(x,y; A, B,w) = —ylog(f(N(x; A, B); w))—
(1—y)log(1—f(N(x; A, B);w))

Can we we reuse our result from before for g—v’;?

Stanford University
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Reusing Derivatives

Let
N(x; A, B) = Bmax{Ax,0} =z

The loss function is now:
L(x,y; A, B,w) = —ylog(f(N(x; A, B); w))—
(1— y) log(1 — F(N(x; A, B); w))

Can we we reuse our result from before for g—v’;?

Replace x with z = N(x; A, B)!
We were differentiating with respect to w, not x, so the process

doesn’'t change! N is simply a constant in this context.

Key Takeaway: Be careful of what you're differentiating with

respect to!

Stanford University
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Problem 1: General ML Review

Regularization
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Regularization

Food for thought: suppose we figure that our model's poor
performance was due to overfitting instead. Why might L,
regularization help, and how would it change our loss function?

L(x,y;w) = —ylog(f(x;w)) — (1 — y) log(1 — f(x;w))

Stanford University a8



Regularization

Food for thought: suppose we figure that our model's poor
performance was due to overfitting instead. Why might L,
regularization help, and how would it change our loss function?

L(x,y;w) = —ylog(f(x;w)) — (1 — y)log(1 — f(x; w))

Key Takeaway: L, regularization penalizes our weights w when

we take a minimization:

min | L(x,; w) = —y log(F(x; w)) — (1~ y) log(1 — £(x; w)) + 51 w]

Stanford University



Search Problem (from Week 3)

Search Problem (from Week 3)
Defining the Search Problem

Redefining for a Heuristic

Stanford University

50



Stanford University

Search Problem (from Week 3)

Defining the Search Problem
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Defining the Search Problem

In 16th century England, there were a set of N 4 1 cities
C={0,1,2,...,N}. Connecting these cities were a set of
bidirectional roads R: (i,j) € R means that there is a road between
city i and city j. Assume there is at most one road between any
pair of cities, and that all the cities are connected. If a road exists
between i and j, then it takes T (i, ) hours to go from i to j.

Romeo lives in city 0 and wants to travel along the roads to meet
Juliet, who lives in city N. They want to meet.

Search problems typically require a lot of reading... try to break it

down to the important parts.

Stanford University
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Defining the Search Problem

Search problems typically require a lot of reading... try to break it

down to the important parts.
e N+ 1 cities C={0,1,2,...,N}
e R: (i,j) € R is a road between city / and j
e Only 1 road between any 2 cities

e T(i,j) hours to go along road from i to j

e Romeo starts at 0, Juliet starts at N

Stanford University



Defining the Search Problem

e N+1 cities C=4{0,1,2 N}
e R: (i,j) € R is a road between city i and j

9 ¢ o o o
) /

e Only 1 road between any 2 cities
e T(i,j) hours to go along road from i to j

e Romeo starts at 0, Juliet starts at N/

To reduce confusion, they will reconnect after each traveling a
road. For example, if Romeo travels from city 3 to city 5 in 10
hours at the same time that Juliet travels from city 9 to city 7 in 8
hours, then Juliet will wait 2 hours. Once they reconnect, they will
both traverse the next road (neither is allowed to remain in the
same city). Furthermore, they must meet in the end in a city, not
in the middle of a road. Assume it is always possible for them to
meet in a city.

Stanford University
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Defining the Search Problem

Stanford University

N + 1 cities C ={0,1,2,..., N}

R: (i,j) € R is a road between city i and j
Only 1 road between any 2 cities

T(i,j) hours to go along road from i to j

Romeo starts at 0, Juliet starts at N

Romeo and Juliet will wait for the other to finish traveling
before moving again, i.e.
Cost of (r,j) = (r',Jj") = max(T(r,r'), T(,J'))

Y
/)
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Defining the Search Problem

N + 1 cities C ={0,1,2,...,N}
R: (i,j) € R is a road between city i and j

Only 1 road between any 2 cities

T(i,j) hours to go along road from i to j
e Romeo starts at 0, Juliet starts at N

e Romeo and Juliet will wait for the other to finish traveling
before moving again, i.e. Cost of

(r,j) = (r',J") = max(T(r,r"), T(j,J))

States: s = (r,j) where r € C and j € C are the cities Romeo and

Juliet currently in

Stanford University
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Defining the Search Problem

N + 1 cities C ={0,1,2,...,N}
R: (i,j) € R is a road between city i and j

Only 1 road between any 2 cities

T(i,Jj) hours to go along road from i to j

e Romeo starts at 0, Juliet starts at N

Romeo and Juliet will wait for the other to finish traveling
before moving again, i.e. Cost of

(r,j) = (r',J') = max(T(r,r"), T(j,J))

Actions((r,j)) = {(r',j) : (r,r') € R,(J,j') € R} corresponds to

both traveling to a connected city

Stanford University
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Defining the Search Problem

N + 1 cities C ={0,1,2,..., N}
R: (i,j) € R is a road between city i and j

Only 1 road between any 2 cities

T(i,j) hours to go along road from i to j
e Romeo starts at 0, Juliet starts at N

e Romeo and Juliet will wait for the other to finish traveling
before moving again, i.e. Cost of

(r,J) = (r',J') = max(T(r,r"), T(j,J))

Cost((r,)), (r',j") = max(T(r,r"), T(j,j')) is the maximum over

the two times

Stanford University

58



Defining the Search Problem

N + 1 cities C ={0,1,2,...,N}
R: (i,j) € R is a road between city i and j

Only 1 road between any 2 cities

T(i,j) hours to go along road from i to j

e Romeo starts at 0, Juliet starts at N

Romeo and Juliet will wait for the other to finish traveling
before moving again, i.e. Cost of

(r,) = (r',J') = max(T(r,r"), T(j,J))

Succ((r,j), (r',j") = (r',)'): just the next pair of cities the two
end up at

Stanford University
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Defining the Search Problem

N + 1 cities C ={0,1,2,...,N}
R: (i,j) € R is a road between city i and j

Only 1 road between any 2 cities

T(i,j) hours to go along road from i to j
e Romeo starts at 0, Juliet starts at N

e Romeo and Juliet will wait for the other to finish traveling
before moving again, i.e. Cost of

(r,j) = (r',J") = max(T(r,r"), T(j,J))

IsGoal((r,j)) = 1[r = j] (whether the two are in the same city)

Stanford University
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Search Problem (from Week 3)

Redefining for a Heuristic

61



Redefining for a Heuristic

N + 1 cities C ={0,1,2,...,N}
R: (i,j) € R is a road between city i and j

Only 1 road between any 2 cities

T(i,j) hours to go along road from i to j
e Romeo starts at 0, Juliet starts at N
Romeo and Juliet will wait for the other to finish traveling

before moving again, i.e. Cost of
(r,j) — (r',j)) =max(T(r,r"), T, "))

Uniform Cost Search to compute M(i, k), the minimum time it
takes one person to travel from city / to city k for all pairs of cities
i,k e C.

Give a consistent A* heuristic for the search problem. Your
heuristic should take O(N) time to compute, assuming that
looking up M(i, k) takes O(1) time.

Stanford University

62



Redefining for a Heuristic

o N+ 1 cities C={0,1,2,...,N}

e R: (i,j) € R is a road between city i and j
e Only 1 road between any 2 cities

e T(i,j) hours to go along road from i to j
e Romeo starts at 0, Juliet starts at N

e Romeo and Juliet will wait for the other to finish traveling
before moving again, i.e. Cost of

(r,g) = (r',J") = max(T(r,r), T(j,J'))
e UCS precompute M(i, k), minimum time to go from any city i
to any city k; takes O(1) to look up

How to relax the search problem to make use of the additional

info? Is there a contradiction anywhere in the criteria?

Stanford University
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Redefining for a Heuristic

N + 1 cities C = {0,1,2,..., N}
R: (i,j) € R is a road between city i and j

Only 1 road between any 2 cities

T(i,Jj) hours to go along road from i to j

e Romeo starts at 0, Juliet starts at N

e UCS precompute M(i, k), minimum time to go from any city i
to any city k; takes O(1) to look up

How to relax the search problem to make use of the additional

info? Is there a contradiction anywhere in the criteria?

Stanford University
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Redefining for a Heuristic

e N+1citiess C=4{0,1,2,...,N}

e R: (i,j) € R is a road between city i and j

e Only 1 road between any 2 cities

e T(i,j) hours to go along road from i to j

e Romeo starts at 0, Juliet starts at N

e Romeo and Juliet will only wait for the other to finish
traveling if they make it to the goal

e UCS precompute M(i, k), minimum time to go from any city i
to any city k; takes O(1) to look up

Key Takeaway: How to relax the search problem to make use of
the additional info? Is there a contradiction anywhere in the

criteria?

Stanford University
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Redefining for a Heuristic

Romeo and Juliet will only wait for the other to finish traveling if

they make it to the goal
h((r,j)) = f:nelg max{M(r,c), M(j, c)}.
A* heuristic h(s) is consistent if
h(s) < Cost(s, a) + h(Succ(s, a)).
so the following needs to be true
mincec max{M(r,c), M(j,c)} <

Cost((r,J), (r,J)) + Crpelré max{M(r', c'), M(j’, c")}

Stanford University
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Redefining for a Heuristic

Romeo and Juliet will only wait for the other to finish traveling if
they make it to the goal

b(r.J)) = minmax{M(r, c), M(j, c)}.
ce

A* heuristic h(s) is consistent if the following is true

mincec max{M(r,c), M(j,c)} <

Cost((r, /), (r'.)) + min max{M(r', '), M(J', )}

The cost on the right-hand side is the original cost function, which

has Romeo/Juliet wait at every stop. That makes the right-hand
side larger!

Stanford University
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