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Hidden Markov Model (HMM)
Review

Defining HMMs
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Defining HMMs - Ice Cream Example

Famous problem by Jason Eisner (2002) where you want to predict
if a day was COLD or HOT (your hidden states) based on records
of the # of ice creams (your known evidence) Eisner ate that day.

B, B2
pitjcow) [s paiHon| [2
P(2|coLD)| = | .4 P |HoT) | = |4
p@|co)| |1 PaIHOT) | |4

e S={s1..sy}, N states (2 states: cold or hot)
e A= ajj...aj...ann, transition probabilities (e.g. cold — hot?)

e B = bj(0;), emission probabilities (e.g. 3 ice creams — hot?)

Stanford o= {m1...mn}, initial probabilities (e.g. start — hot?)



Defining HMMs - Ice Cream Example

Stanford

Famous problem by Jason Eisner (2002) where you want to predict
if a day was COLD or HOT (your hidden states) based on records
of the # of ice creams (your known evidence) Eisner ate that day.

5 .6
é .5 é
B4 an” . T B,

pi11cop)| |5 P(1 | HOT) 2
p2|coLD)| = | 4 pe|HOT) | = |4
p@a|cop)| |.1 P(3 | HOT) 4

HMM problem to motivate the Forward Algorithm:

e Given HMM M\ (like above), what is the probability P(O|\) of
a specific observation sequence O (evidence e.g. 3 1 3)?



Hidden Markov Model (HMM)

Review

The Forward Algorithm

Stanford University



The Forward Algorithm - Ice Cream Example

B,

P(1] COLD)
p(2| coLD)| =
P(3| COLD)

[z

1

3]

|

By

P(1|HOT) 2
p2|HOoT) | = |4
P(3 | HOT) 4

HMM problem to motivate the Forward Algorithm:

e Given HMM M\ (like above), what is the probability P(O|\) of
a specific observation sequence O (evidence e.g. 3 1 3)7

First, consider an easier problem: suppose our states are not hidden

(we just have a “Markov model”) and we have Q = (hot hot cold).

Stanford

What is the probability (aka likelihood) of O = 3, 1, 37
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The Forward Algorithm - Ice Cream Example

5 6
é .5 é
B, Vel 4 RN =

P(1| COLD) 5 P(1 | HOT) 2
P(2|CcOLD)| =] 4 P(2|HOT) | = |4
P(3| COLD) & P(3 | HOT) 4

First, consider an easier problem: suppose our states are not hidden

(we just have a "Markov model”) and we have Q = (hot hot cold).

What is the probability (aka Iikelihood) of 0 =3, 1, 37

P(O|Q) = HP(otht)

P(3 1 3|hot hot cold) = P(3|hot)P(1|hot)P(3|coId)



The Forward Algorithm - Ice Cream Example

B, B2

pijco)| [s pHon]  [2
P(2| COLD)| = | .4 P |HOT) | = |4
p@|co)| |1 PaIHOT) | |4

Simplification: probability O = 3, 1, 3 given @ = (hot hot cold)?
P(3 1 3|hot hot cold) = P(3]hot)P(1|hot)P(3|cold)

Stanford



The Forward Algorithm - Ice Cream Example

B, B2

P(1| COLD) 5 P(1|HOT) 2
P(2|coLD)| = . P(2|HOT) | = |4
P(3 | COLD) A P(3 | HOT) 4

Simplification: probability O = 3, 1, 3 given @ = (hot hot cold)?
P(3 1 3|hot hot cold) = P(3|hot)P(1|hot)P(3|cold)

Back to the original problem: we don't know the actual weather
sequence — it's a HIDDEN Markov model!

What is the probability of 3 1 3 given the HMM?

Stanford



The Forward Algorithm - Ice Cream Example

B,

P(1|COLD) 5
P(2|COLD) =] 4
P(3| COLD) 5

|

By

P(1| HOT) 2
P2|HOT)| = |4
P(3 | HOT) 4

Back to the original problem: we don’t know the actual weather
sequence — it's a HIDDEN Markov model!

What is the probability of 3 1 3 given the HMM?

Brute Force: Sum over all possible weather sequences:
P(3 1 3, cold cold cold)? P(3 1 3, hot cold cold)?
P(3 1 3, hot hot cold)? etc...?

Stanford Then add them all together...




The Forward Algorithm - Ice Cream Example

B, B,
P(1| COLD) 5 P(1]HOT) 2
P(2|coLD)| =| 4 P(2|HOT) | = |4
P(3| COLD) A P(3 | HOT) 4

What is the probability of 3 1 3 given the HMM?

Brute Force: Sum over all possible weather sequences:
P(3 1 3, cold cold cold)? P(3 1 3, hot cold cold)? etc...?

P(O, Q) is the joint probability:

T T
P(0,Q) = P(O|Q)P(Q) = | | P(ola:) ] | P(atlqe-1)
t t
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The Forward Algorithm - Ice Cream Example

B, B,

P(1| COLD) 5 P(1|HOT) 2
P(2|COLD)|=| 4 P(2|HOT) | = |4
P(3| COLD) i1 P(3 | HOT) A

P(O, Q) is the joint probability:

T T
P(0,Q) = P(0|Q)P(Q) = [ | P(otla:) ] | P(aclge-1)

Example: joint probability of O =3 1 3 and @ = hot hot cold
P(O, Q) =P(3|hot)P(1|hot) P(3|cold) P(hot|start) P(hot|hot) P(cold|hot)



The Forward Algorithm - Ice Cream Example

B1 B,

P(1| COLD) 5 P(1|HOT) 2
P(2|coLD)| = . P(2|HOT) | = |4
P(3| COLD) % P(3 | HOT) 4

Example: joint probability of O =3 1 3 and @ = hot hot cold
P(O, Q) =P(3|hot)P(1|hot)P(3|cold) P(hot|start) P(hot|hot) P(cold|hot)

3 1 3

Stanford



The Forward Algorithm - Ice Cream Example

B,

By

P(1| COLD) 5 P(1| HOT) 2
P(2|COLD)| =] 4 P(2|HOT) | = |4
P(3| COLD) A P(3 | HOT) A

What is the probability of 3 1 3 given the HMM?
Brute Force: Sum over all possible weather sequences:

P(3 1 3, cold cold cold) + P(3 1 3, hot cold cold) + P(3 1 3, hot
hot cold) + ...

This is a N7 operation with N states and T observations!

Not efficient for more complex problems!
Stanford )



The Forward Algorithm - Ice Cream Example

B, B,

pi11cop)| |5 P(1 | HOT) 2
p2|coLD)| = | .4 P2|HOT) | = |4
pi3|cop)| |.1 P(3 | HOT) 4

What is the probability of 3 1 3 given the HMM?

P(3 1 3, cold cold cold) + P(3 1 3, hot cold cold) + P(3 1 3, hot
hot cold) + ...

This is a N7 operation with N states and T observations!

Forward Algorithm does this in O(N?T) via dynamic programming!

Stanford
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The Forward Algorithm - Ice Cream Example

B, B,
P(1| COLD) 5 P(1|HOT) 2
P(2|COLD)| = | 4 P(2|HOT) | = | 4
P(3 | COLD) % | P(3 | HOT) 4
@,(2)=.32 a,(2)=.32".12 + .02".1 = .0404
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The Forward Algorithm - Ice Cream Example

a,(2)=32 ay(2)= 3212 + .02".1 = .0404
P(HIH) * P(1IH)
CH e — A O B SRR
92 N P(C/HJ ] 6.2 @
g p/,/ \‘\ ,—"
50 N -
D i =
X _ . e DEN
& qw-0 .o ay(1) = 32°2 + 02725069
D ¥ \,\\,\\0\6. 2 -
a e g% 2 pEIC)*PAIC) N
S < 5.5

Formally, for each cell a;(j) in our lattice structure, we compute

N
at(f) = Zat_l(i)aijbj(ot)

and the probability of sequence 3 1 3 is at the end

N
PO = ar()
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Hidden Markov Model (HMM)
Review

Relating back to Lecture
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The Problem of Filtering

Stanford

@,(2)=32 a,(2)= .32".12 +.02".1 = .0404
7o P(HIH) * P(1IH)

{ H ) S AL B L P
92 N DfC//.,) ] 6.2 @

2

g s /’/C‘/ F
S o
L am=o02 .o a,(1) = .32".2 + 02°25°=_069
e UV ©e .- -~

Qb
a Cey £ ° P(cic)* P(1IC)
e S\ 5°5
e N\
<
2D

p(ha = 0lhy = O)p(es = 2} 3 = 0lhy = 0)p(es = 2|hs = 0,
tart H) =1 Hy=1 =
E = H2=2] =

Problem of Filtering: what is the distribution of a hidden state H;
based on the observations aka evidence (E in lecture) so far?
Check your understanding: what is the distribution of g in the ice
cream example given observations O: 01 = 3 and 0, =17




The Problem of Filtering

Stanford

@,(2)=.32 a,(2)=.32".12 +.02°.1 = .0404
P(HIH) * P(1IH)
q H — B e
: e ~(h)
S . 5
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D e
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p(ha = 0lhy = O)p(es = 2/hy = 0, plhs = 0lhy = 0)p(es = 2|hs = 0
IE;U><HFU
tart H,=1 Ho=1

1= 2=

Problem of Filtering: what is the distribution of g, in the ice
cream example given observations O: o1 =3 and 0, =17

0.0404
0.0404+0.069

0.069
0.0404-+0.069

P(g2 = H |o1,02) = P(go = C |01, 02) =



The Problem of Smoothing

@(2)=32 @,(2)=.32".12 +.02".1 =.0404

3 S  PHHPIIH) o @
2 "/C,H)‘ 672 g
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p(ha = 0hy = 0)p(ez = 2lhy = 0) plhy = 0lhy = 0)p(es = 2|hs = 0
%MLO
tart H, =1 Hy=1 Hy=1 End

Problem of Smoothing: what is the distribution of a hidden state
H; based ALL observations aka evidence from start to end?
Forward Algorithm is not enough! What if hypothetically a later

- [ : ?
Stanford trgnsntlon 1Is O
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The Problem of Smoothing

T

For Smoothing, need Forward AND Backward passes!

e Forward: compute a;(i) or F from lecture.
e Backward: compute 3:(i) or B from lecture.
e Define S = FB, that is for each cell in the lattice, multiply the

forward and backward results together.

What happens now if there is a 0 along the backward pass?



The Problem of Smoothing

(LllZi=.32 (12(2)= .32°.12 +.02*.1 = .0404
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e Forward: compute a;(i) or F from lecture.

e Backward: compute (i) or B from lecture.
e Define S =FB

Suppose $2(1) = 0.03, 82(2) = 0.02 (made up numbers).
What is the distribution of g, given all observations O7?

Stanford



The Problem of Smoothing

@(2)=32 @,(2)=.32".12 +.02".1 =.0404

P(HIH) * P(1IH)
H ——
a2 "/c,/y)‘ 6.2
P,
4+ R
75"

(1) =.02 .
oy \)\\Q\ .2

O ot
oW ey £ °_P(cic)* P(1IC)
S Q¢ ) 5*.5
- &
<

Suppose B2(1) = 0.03, 52(2) = 0.02 (made up numbers).
What is the distribution of g, given all observations O7

_ _ 0.0404%0.02
P(g2=H |0) = 0.0404%0.02+-0.069%0.03
- _ 0.069+0.03
2 (q2 =C |O) — 0.0404%0.02+-0.069%0.03

Check back on the lecture slides to make sure you see the parallel!

Stanford



Hidden Markov Model (HMM)
Review

Particle Filtering
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Motivation for Particle Filtering

@,(2)=.32 a,(2)=.32".12 +.02".1 = .0404

a,(l)=.02 .
1 Y\\G\ .2

a e §§ V Y2 o)+ p(ic)
S o\ 5°5
o >

\

For T observations and N possible states (i.e. |domain| = N), the
Forward-Backward Algorithm is O(2 x N> T) — O(N2T).

This can still be slow if N is large! Or consider if the domain is
based on a continuous function, e.g. instead of just hot or cold, we

have to consider a spectrum of floating point temperatures [0, 100].

Stanford



Particle Filtering

B, B,
P(1| COLD) 5 P(1]HOT) 2
P(2|coLD)| =| 4 P(2|HOT) | = |4
P(3| COLD) A P(3 | HOT) 4

Big idea of Particle Filtering: introduce sampling!

1. First, we propose assignments aka particles to each hidden
state by sampling from the transition probabilities.

Example: proposing a value for g; involves sampling from
P(H|start) = 0.8 and P(Cl|start) = 0.2, i.e. we have an
80% chance to pick hot, 20% chance to pick cold.

Stanford



Particle Filtering
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B1 B,
P(1| COLD) .5 P(1|HOT) 2
P(2|coLD)| = | 4 P|HOT) | = |4
P(3| COLD) A P(3 | HOT) 4

2 Second, we weight each assignment by the emission

probabilities.

Example: suppose we have 3 particles of g1 = H,q1 = H,q1 = C,
and we have the observation o = 1.

Then the weights of our particles are P(1|H) = 0.2, P(1|H) = 0.2,
P(1|C) = 0.5 respectively.



Particle Filtering

B, B2

P(1| COLD) 5 P(1| HOT) 2
P(2|coLD)| =] 4 P(2|HOT) | = |4
P(3 | COLD) A P(3 | HOT) 4

1. First, we propose assignments aka particles to each hidden

state by sampling from the transition probabilities.
2. Second, we weight each assignment by the emission

probabilities.
3. Third, we resample new assignments from the particles based

on the weight distributions.

Stanford



Particle Filtering

Stanford

3 Third, we resample new assignments from the particles based
on the weight distributions.

Example: suppose we have 3 particles of g1 = H,q1 = H,q1 = C,
and we have the observation o; = 1.

Then the weights of our particles are P(1|H) = 0.2, P(1|H) = 0.2,
P(1|C) = 0.5 respectively.

Now to resample, we have the distribution:

e P(g1 — H) = o.2+8:§+0.5
o P(q1 = H) = o.2+8:§+0.5
o P(q1 = C) = 0.2+8:g+0.5

Notice how even though our initial proposal had a higher chance to
pick g1 = H, we now have a higher chance to get g1 = C!

The resampling takes into account the observations! —



Particle Filtering

B, B2
pitjco)| [s piHon | [2
P(2| cOLD)| = | .4 p(HOT) | = |4
p@|co)| |1 paiHOT) | |4

Suppose after all that, we have new assignments for our 3
particles: g1 = C,q1 = C,q1 = H...

And repeated the propose process for g, to get: (q1,q2) = (C, H);
(91,92) = (C, C); (q1,92) = (H, C) with 0, = 3...

Stanford



Particle Filtering

5 .6
é .5 é
B, a” . . B,

P(1| COLD) 5 P(1|HOT) 2
P2|coLD)| = | 4 P(2|HOT) | = |4
P(3| COLD) A P(3 | HOT) 4

And repeated the propose process for g» to get: (g1, q2) = (C, H);
(q17 q2) = (C) C)r (q17 q2) = (H) C) with O = -

The weight process then assigns the particles:

L4 (q1, QQ) = (C, H): P(3|H) = 0.4
e (q1,92) =(C,C): P(3|C)=0.1
 (q1,92) = (H,C): P(3[C) =01

Stanford



Particle Filtering

The weight process then assigns the particles:
e (q1,92) = (C,H): P(3|H) =04
e (q1,42) = (C,C): P(3|C)=0.1
e (q1,92) = (H,C): P(3|C) =0.1

And the resample process then samples from the above 3 options,
that is:

e (g1,92) = (C, H) has a 4/6 chance of being picked.
e The other two each have a 1/6 chance of being picked.

And so a possible resampling result might yield the particles:
(91,92) = (C,H),(C, H), and (C, C).
And you'd repeat the process with gs...

Stanford



Outline

e HMM Review

e Bayesian networks: Learning
o  Maximum likelihood

o Smoothing
o EM Algorithm

® Problem discussion
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Bayesian networks: Learning

Given local Given

probability observations /
distributions, i.e. samples
P(x | parents(x))
Find the local
@ @ Find conditional distributions, i.e.
P(Q | E=e) P(x | Parents(x))
Inference Learning

Stanford University



Example

Variables:
e Genre G € {drama, comedy}
e Rating R € {1,2,3,4,5}

@_,@ P(G =g,R=r1)=pc(9)pr(r| 9)

Drrain = {(d74)7 (da 4)7 (da 5)7 (Cv 1)7 (C7 5)}

Parameters: 0 = (pg, Pr)

Example borrowed from lecture slides

Stanford University



Outline

® Bayesian networks: Learning
o Maximum likelihood

o Smoothing
o EM Algorithm

® Problem discussion
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Maximum likelihood

Input: training examples Di,.in of full assignments
Output: parameters § = {p; : d € D}

w - -
F Algorithm: count and normalize

Count:
For each variable z;:

Increment count g, (Zparents(s)> Ts)
Normalize:

For each d and local assignment Zprents(i):

Set pa(Zi | Trarents(i)) X county(Tparents(s)s Ts)

Slide borrowed from lecture slides

Stanford University



Outline

® Bayesian networks: Learning
o  Maximum likelihood

o  Smoothing
o EM Algorithm

® Problem discussion
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Smoothing

Why?
e What if countis 0? Should P be 07

How to solve?
® |Initialize all counts with a non-zero constant A

Observations

® Larger A -> more uniform distributions, less influenced by data
e Smaller A -> more influenced by data
® Infinite data -> effect of A vanishes

Stanford University



Final algorithm

Input: training examples Di,.in of full assignments
Output: parameters § = {p; : d € D}

3 . .
F Algorithm: count and normalize

Count:
For each variable z;:

Increment count g, (Zparents(s)> Ts)
Normalize:

For each d and local assignment Zprents(i):

Set pd(xi ‘ xParents(i)) X Countd(xParents(i)yxi) + A

Slide modified from lecture slides

Stanford University



Outline

® Bayesian networks: Learning
o  Maximum likelihood

o Smoothing
o EM Algorithm

® Problem discussion
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EM Algorithm

Variables: H is hidden, ¥ = e is observed

Example:

H=G E=(R1,R2) e=(1,2)

@ 0 = (pG,pR)

Maximum marginal likelihood objective:

max | | P(E = e;0)

€€ Dyrain

=max || ZP(th,Eze;H)

e€EDirain h
Slide borrowed from lecture slides

Stanford University



EM Algorithm

Initialize © randomly

Until convergence:
# E Step
for each e in Data:
for each h:
q(h; e)=P(H=h | E=¢e; 0) ... inference
# Update table from {e, count(e)} to {(h,e), (q(h; e) x count(e)}
# Now no variables are hidden
# M step
update(0) using Table {(h,e), (q(h; e) x count(e)} ... MLE

Stanford University



Summary

® Given data learn the parameters of bayesian net

EM
MLE Smoothing Data is incomplete
p o< count(x; p o< count(x; E step: compute
pa rents(xi)) pa rents(xi)) + A counts
M step: MLE

Stanford University



Outline

e HMM Review

® Bayesian networks: Learning
o  Maximum likelihood

o Smoothing
o EM Algorithm

® Problem discussion
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Problem: P2, Winter 2021 Exam 2

Pick a coin Toss it
— ? > H/T?
= | P (H)=
Gambling PolCd = A, ) =P
Machine

With probability A coin
at “t” is same as “t-1”

Stanford University



How does the bayesian net look?

P(c)= % &% ) = A Ga G
9, e PL el ) -9 %dbz

-
- = E

Stanford University



Learning using EM algorithm

e Data={H, H, T}
® A, and A are given. To find: p, and p,

e Why do we need EM?

o What is not observed?
o Ci is not observed

e How do we use EM?
o Compute q(c,) using p’, and p’,
o Use ML to update p’, and p’,

Stanford University



Given q’s compute update

T=1 T=2 T=3
X 0.1 0.5 0.3
Y 0.9 0.5 0.7
Data = {H, H, T}
Compute:
Count

Stanford University




Given q’s compute update

T=1 T=2 T=3
X 0.1 05 0.3 Data ={H, H, T}
Y 0.9 0.5 0.7
C. O, Count
X H 0.1
X H 0.5
X T 0.3
P(H | X) =p’,

=(0.1+0.5)/(0.1+0.5+0.3) ... MLE

Stanford University




Thank You
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