CS221 Problem Workout

Week 8

Stanford University

Introduction

Jenn Grannen

General OH: Mondays HW OH: Fridays 9:30-11:00 Bytes + Zoom 9:30-11:00 Huang Basement

Jeremy Kim

 HW OH: Wednesdays
 3:30-5:30 Huang

 HW OH: Sunday
 2:00-3:00 Online

Outline

HMM Review

• Bayesian networks: Learning

- Maximum likelihood
- Smoothing
- EM Algorithm
- Problem discussion

Hidden Markov Model (HMM) Review

Defining HMMs

Defining HMMs - Ice Cream Example

Famous problem by Jason Eisner (2002) where you want to predict if a day was COLD or HOT (your hidden states) based on records of the # of ice creams (your known evidence) Eisner ate that day.

- $S = \{s_1...s_N\}$, N states (2 states: cold or hot)
- $A = a_{11}...a_{ij}...a_{NN}$, transition probabilities (e.g. cold \rightarrow hot?)
- $B = b_i(o_t)$, emission probabilities (e.g. 3 ice creams \rightarrow hot?)
- $\pi = \{\pi_1 ... \pi_N\}$, initial probabilities (e.g. start \rightarrow hot?)

Defining HMMs - Ice Cream Example

Famous problem by Jason Eisner (2002) where you want to predict if a day was COLD or HOT (your hidden states) based on records of the # of ice creams (your known evidence) Eisner ate that day.

HMM problem to motivate the Forward Algorithm:

 Given HMM λ (like above), what is the probability P(O|λ) of a specific observation sequence O (evidence e.g. 3 1 3)?

Hidden Markov Model (HMM) Review

The Forward Algorithm

HMM problem to motivate the Forward Algorithm:

 Given HMM λ (like above), what is the probability P(O|λ) of a specific observation sequence O (evidence e.g. 3 1 3)?

First, consider an easier problem: suppose our states are not hidden (we just have a "Markov model") and we have Q = (hot hot cold). What is the probability (aka likelihood) of O = 3, 1, 3?

First, consider an easier problem: suppose our states are not hidden (we just have a "Markov model") and we have Q = (hot hot cold).

What is the probability (aka likelihood) of O = 3, 1, 3?

$$P(O|Q) = \prod_t^T P(o_t|q_t)$$

 $P(3 \ 1 \ 3| ext{hot cold}) = P(3| ext{hot})P(1| ext{hot})P(3| ext{cold})$

Simplification: probability O = 3, 1, 3 given Q = (hot hot cold)? $P(3 \ 1 \ 3|hot hot cold) = P(3|hot)P(1|hot)P(3|cold)$

Simplification: probability O = 3, 1, 3 given Q = (hot hot cold)? $P(3 \ 1 \ 3|hot hot cold) = P(3|hot)P(1|hot)P(3|cold)$

Back to the original problem: we don't know the actual weather sequence – it's a HIDDEN Markov model!

What is the probability of 3 1 3 given the HMM?

Back to the original problem: we don't know the actual weather sequence – it's a HIDDEN Markov model!

What is the probability of 3 1 3 given the HMM?

Brute Force: Sum over all possible weather sequences: $P(3 \ 1 \ 3, \text{ cold cold cold})? P(3 \ 1 \ 3, \text{ hot cold cold})? P(3 \ 1 \ 3, \text{ hot hot cold})? etc...?$ Then add them all together...

What is the probability of $3\ 1\ 3$ given the HMM?

Brute Force: Sum over all possible weather sequences: $P(3 \ 1 \ 3, \text{ cold cold })? P(3 \ 1 \ 3, \text{ hot cold cold})? etc...?$

P(O, Q) is the joint probability:

$$P(O, Q) = P(O|Q)P(Q) = \prod_{t}^{T} P(o_t|q_t) \prod_{t}^{T} P(q_t|q_{t-1})$$

P(O, Q) is the joint probability:

$$P(O, Q) = P(O|Q)P(Q) = \prod_{t}^{T} P(o_t|q_t) \prod_{t}^{T} P(q_t|q_{t-1})$$

Example: joint probability of $O = 3 \ 1 \ 3$ and Q = hot hot cold P(O, Q) = P(3|hot)P(1|hot)P(3|cold)P(hot|start)P(hot|hot)P(cold|hot)

Example: joint probability of $O = 3 \ 1 \ 3$ and Q = hot hot cold P(O, Q) = P(3|hot)P(1|hot)P(3|cold)P(hot|start)P(hot|hot)P(cold|hot)

What is the probability of 3 1 3 given the HMM?

Brute Force: Sum over all possible weather sequences:

 $P(3 \ 1 \ 3, \text{ cold cold cold}) + P(3 \ 1 \ 3, \text{ hot cold cold}) + P(3 \ 1 \ 3, \text{ hot hot cold}) + ...$

This is a N^T operation with N states and T observations!

Not efficient for more complex problems!

What is the probability of 3 1 3 given the HMM?

 $P(3 \ 1 \ 3, \text{ cold cold } cold) + P(3 \ 1 \ 3, \text{ hot cold cold}) + P(3 \ 1 \ 3, \text{ hot hot cold}) + ...$

This is a N^T operation with N states and T observations!

Forward Algorithm does this in $O(N^2T)$ via dynamic programming!

Formally, for each cell $\alpha_t(j)$ in our lattice structure, we compute

$$\alpha_t(j) = \sum_i^N \alpha_{t-1}(i) a_{ij} b_j(o_t)$$

and the probability of sequence 3 1 3 is at the end

$$\mathsf{P}(O|\lambda) = \sum_{i}^{N} lpha_{\mathcal{T}}(i)$$

Hidden Markov Model (HMM) Review

Relating back to Lecture

The Problem of Filtering

Problem of Filtering: what is the distribution of a hidden state H_i based on the observations aka evidence (*E* in lecture) so far? Check your understanding: what is the distribution of q_2 in the ice cream example given observations *O*: $o_1 = 3$ and $o_2 = 1$?

The Problem of Filtering

Problem of Filtering: what is the distribution of q_2 in the ice cream example given observations O: $o_1 = 3$ and $o_2 = 1$?

$$P(q_2 = \mathsf{H} \mid o_1, o_2) = rac{0.0404}{0.0404 + 0.069}$$
, $P(q_2 = \mathsf{C} \mid o_1, o_2) = rac{0.069}{0.0404 + 0.069}$

Problem of Smoothing: what is the distribution of a hidden state H_i based ALL observations aka evidence from start to end? Forward Algorithm is not enough! What if hypothetically a later transition is 0?

For Smoothing, need Forward AND Backward passes!

- Forward: compute $\alpha_t(i)$ or F from lecture.
- Backward: compute $\beta_t(i)$ or B from lecture.
- Define S = FB, that is for each cell in the lattice, multiply the forward and backward results together.

What happens now if there is a 0 along the backward pass?

- Forward: compute $\alpha_t(i)$ or F from lecture.
- Backward: compute $\beta_t(i)$ or B from lecture.
- Define S = FB

Suppose $\beta_2(1) = 0.03$, $\beta_2(2) = 0.02$ (made up numbers). What is the distribution of q_2 given all observations *O*?

Suppose $\beta_2(1) = 0.03$, $\beta_2(2) = 0.02$ (made up numbers). What is the distribution of q_2 given all observations O?

$$P(q_2 = H | O) = \frac{0.0404 * 0.02}{0.0404 * 0.02 + 0.069 * 0.03}$$
$$P(q_2 = C | O) = \frac{0.069 * 0.03}{0.0404 * 0.02 + 0.069 * 0.03}$$

Check back on the lecture slides to make sure you see the parallel!

Hidden Markov Model (HMM) Review

Particle Filtering

Motivation for Particle Filtering

For T observations and N possible states (i.e. |domain| = N), the Forward-Backward Algorithm is $O(2 * N^2 T) \rightarrow O(N^2 T)$.

This can still be slow if N is large! Or consider if the domain is based on a continuous function, e.g. instead of just hot or cold, we have to consider a spectrum of floating point temperatures [0, 100].

Big idea of Particle Filtering: introduce sampling!

1. First, we propose assignments aka particles to each hidden state by sampling from the transition probabilities.

Example: proposing a value for q_1 involves sampling from P(H|start) = 0.8 and P(C|start) = 0.2, i.e. we have an 80% chance to pick hot, 20% chance to pick cold.

2 Second, we weight each assignment by the emission probabilities.

Example: suppose we have 3 particles of $q_1 = H$, $q_1 = H$, $q_1 = C$, and we have the observation $o_1 = 1$. Then the weights of our particles are P(1|H) = 0.2, P(1|H) = 0.2, P(1|C) = 0.5 respectively.

- 1. First, we propose assignments aka particles to each hidden state by sampling from the transition probabilities.
- 2. Second, we weight each assignment by the emission probabilities.
- 3. Third, we resample new assignments from the particles based on the weight distributions.

3 Third, we resample new assignments from the particles based on the weight distributions.

Example: suppose we have 3 particles of $q_1 = H$, $q_1 = H$, $q_1 = C$, and we have the observation $o_1 = 1$.

Then the weights of our particles are P(1|H) = 0.2, P(1|H) = 0.2, P(1|H) = 0.2, P(1|C) = 0.5 respectively.

Now to resample, we have the distribution:

•
$$P(q_1 \to H) = \frac{0.2}{0.2 + 0.2 + 0.5}$$

•
$$P(q_1 \to H) = \frac{0.2}{0.2 + 0.2 + 0.5}$$

•
$$P(q_1 \to C) = \frac{0.5}{0.2 + 0.2 + 0.5}$$

Notice how even though our initial proposal had a higher chance to pick $q_1 = H$, we now have a higher chance to get $q_1 = C$! The resampling takes into account the observations!

Suppose after all that, we have new assignments for our 3 particles: $q_1 = C$, $q_1 = C$, $q_1 = H$... And repeated the propose process for q_2 to get: $(q_1, q_2) = (C, H)$; $(q_1, q_2) = (C, C)$; $(q_1, q_2) = (H, C)$ with $o_2 = 3$...

And repeated the propose process for q_2 to get: $(q_1, q_2) = (C, H)$; $(q_1, q_2) = (C, C)$; $(q_1, q_2) = (H, C)$ with $o_2 = 3...$

The weight process then assigns the particles:

- $(q_1, q_2) = (C, H)$: P(3|H) = 0.4
- $(q_1, q_2) = (C, C)$: P(3|C) = 0.1
- $(q_1, q_2) = (H, C)$: P(3|C) = 0.1

The weight process then assigns the particles:

- $(q_1, q_2) = (C, H)$: P(3|H) = 0.4
- $(q_1, q_2) = (C, C)$: P(3|C) = 0.1
- $(q_1, q_2) = (H, C)$: P(3|C) = 0.1

And the resample process then samples from the above 3 options, that is:

- $(q_1, q_2) = (C, H)$ has a 4/6 chance of being picked.
- The other two each have a 1/6 chance of being picked.

And so a possible resampling result might yield the particles: $(q_1, q_2) = (C, H), (C, H), \text{ and } (C, C).$ And you'd repeat the process with $q_3...$

Outline

HMM Review

• Bayesian networks: Learning

- Maximum likelihood
- Smoothing
- EM Algorithm
- Problem discussion

Bayesian networks: Learning

Given local probability distributions, i.e. P(x | parents(x))

Find conditional P(Q | E=e)

Inference

Given observations / samples

Find the local distributions, i.e. P(x | Parents(x))

Learning

Example

Variables:

- Genre $G \in \{ drama, comedy \}$
- Rating $R \in \{1, 2, 3, 4, 5\}$

$$\bigcirc G \longrightarrow R \qquad \mathbb{P}(G = g, R = r) = p_G(g)p_R(r \mid g)$$

 $\mathcal{D}_{\mathsf{train}} = \{(\mathsf{d},4), (\mathsf{d},4), (\mathsf{d},5), (\mathsf{c},1), (\mathsf{c},5)\}$

Parameters: $\theta = (p_G, p_R)$

Example borrowed from lecture slides

Outline

- Bayesian networks: Learning
 - Maximum likelihood
 - Smoothing
 - EM Algorithm
- Problem discussion

Maximum likelihood

Input: training examples $\mathcal{D}_{\text{train}}$ of full assignments

```
Output: parameters \theta = \{p_d : d \in D\}
```


Slide borrowed from lecture slides

Outline

- Bayesian networks: Learning
 - Maximum likelihood
 - Smoothing
 - EM Algorithm
- Problem discussion

Smoothing

Why?

• What if count is 0? Should P be 0?

How to solve?

• Initialize all counts with a non-zero constant $\boldsymbol{\lambda}$

Observations

- Larger λ -> more uniform distributions, less influenced by data
- Smaller λ -> more influenced by data
- Infinite data -> effect of λ vanishes

Final algorithm

Input: training examples $\mathcal{D}_{\text{train}}$ of full assignments

```
Output: parameters \theta = \{p_d : d \in D\}
```


Slide modified from lecture slides

Outline

• Bayesian networks: Learning

- Maximum likelihood
- Smoothing
- EM Algorithm
- Problem discussion

EM Algorithm

Variables: H is hidden, E = e is observed Example:

$$G$$

 $H = G$ $E = (R_1, R_2)$ $e = (1, 2)$
 $\theta = (p_G, p_R)$

Maximum marginal likelihood objective:

$$\begin{split} & \max_{\theta} \prod_{e \in \mathcal{D}_{\text{train}}} \mathbb{P}(E = e; \theta) \\ & = \max_{\theta} \prod_{e \in \mathcal{D}_{\text{train}}} \sum_{h} \mathbb{P}(H = h, E = e; \theta) \end{split}$$

Slide borrowed from lecture slides

EM Algorithm

Initialize $\boldsymbol{\theta}$ randomly

Until convergence:

E Step

for each e in Data:

for each h:

 $q(h; e) = P(H = h | E = e; \theta) \dots$ inference

Update table from {e, count(e)} to {(h,e), (q(h; e) x count(e)}

Now no variables are hidden

M step

update(θ) using Table {(h,e), (q(h; e) x count(e)} ... MLE

Summary

• Given data learn the parameters of bayesian net

MLE $p \propto count(x_i;$ $parents(x_i))$ **Smoothing** $p \propto count(x_i;$ parents(x_i)) + λ EM Data is *incomplete E step:* compute counts *M step:* MLE

Outline

- HMM Review
- Bayesian networks: Learning
 - Maximum likelihood
 - Smoothing
 - EM Algorithm
- Problem discussion

Problem: P2, Winter 2021 Exam 2

How does the bayesian net look?

Learning using EM algorithm

- Data = {H, H, T}
- λ_0 and λ are given. To find: p_{χ} and p_{γ}
- Why do we need EM?
 - \circ What is not observed?
 - C_i is not observed
- How do we use EM?
 - Compute $q(c_i)$ using p'_x and p'_y
 - Use ML to update p'_{χ} and p'_{γ}

Given q's compute update

	T=1	T=2	T=3
Х	0.1	0.5	0.3
Y	0.9	0.5	0.7

Data = {H, H, T}

Compute:

C _i	O _i	Count
?	?	?

Given q's compute update

	T=1	T=2	T=3
X	0.1	0.5	0.3
Y	0.9	0.5	0.7

C _i	O _i	Count
x	Н	0.1
X	н	0.5
X	Т	0.3

$$P(H \mid X) = p'_{X}$$

= (0.1 + 0.5) / (0.1 + 0.5 + 0.3) ... MLE

Thank You