Lecture 18: Deep Learning
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Reminders

e Projects due on Wednesday at noon PT (no late days allowed, to
give time for grading).

e Exam regrade requests due Wednesday at midnight PT.
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A brief history

e 1943: neural networks < logical circuits (McCulloch /Pitts)
e 1949: "cells that fire together wire together” learning rule (Hebb)
e 1969: theoretical limitations of neural networks (Minsky/Papert)

e 1974: backpropagation for training multi-layer networks (Werbos)

e 1986: popularization of backpropagation (Rumelhardt, Hinton,
Williams)
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A brief history

e 1080: Neocognitron, a.k.a.  convolutional neural networks
(Fukushima)

e 1989: backpropagation on convolutional neural networks (LeCun)

e 1990: recurrent neural networks (Elman)

e 1997 Long  Short-Term  Memory networks (Hochre-
iter /Schmidhuber)

e 2006: unsupervised layerwise training of deep networks (Hinton et

al.)
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Interest over time

Google Trends

Query: deep learning
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[figure from Li Deng]

Speech recognition (2009-2011)
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4% .

1989 2011

e Steep drop in WER due to deep learning
e IBM, Google, Microsoft all switched over from GMM-HMM
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[Krizhevsky et al., 2012, a.k.a. AlexNet|

Object recognition (2012)
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e Landslide win in ILSVRC object recognition competition
e Computer vision community switched to CNNSs

e Simpler than hand-engineered features (SIFT)
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Machine translation (2016)

Google’s Neural Machine Translation System: Bridging the Gap
between Human and Machine Translation

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi
yonghui, schuster,zhifengc,qvl ,mnorouzi@google.com

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey,
Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser,
Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens,
George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa,
Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, Jeffrey Dean

8 perfect translation
. :
Input sentence: Translation (PBMT): Translation (GNMT): £ . neural (GNMT)
i 4 m
] e
T T REN R | Ui Kegiang premier Li Kegiang will start the g phrase-based (PBMT)
fmTReE et sEAEs) B added this line to start annual dialogue g 3
INEAsR R Sa4T | the annual dislogue mechanism with Prime b
i E AR IR mechanism with the Minister Trudeau of E 2
EE Canadian Prime Minister | Canada and hold the first =
Trudeau two prime annual dialogue between 1
ministers held its first the two premiers.
annual session. 0

English  English  English  Spanish  French  Chinese
> > > > > >

Spanish  French  Chinese  English  English  English

Translation model

e Decisive wins have taken longer to achieve in NLP (words are
meaningful in a way that pixels are not)

e Current state-of-the-art in machine translation
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e Defeated world champion Le Sedol 4-1

e Simple architecture (in contrast, DeepBlue was search + hand-
crafted heuristics)
e 2017: AlphaGoZero does not require human expert games as su-

pervision
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What is deep learning?

A family of techniques for learning compositional vector representations
of complex data.

000009
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Review: linear predictors

. 8\0 fo(x)

i) >

fo(z)

Output:

||
g
t

Parameters: 0 = w
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i Review: neural networks

Vv hy

"

i @/Q fo(x)

T3 ho
Intermediate hidden units:
hifw) = olv; @) o(z) = (1+e)
Output:
fo(x) = w - h(z)
Parameters: 6 = (V,w)
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Deep neural networks

1-layer neural network:

x
w'
score = o
O
o
2-layer neural network: T
V _
w ! -
score :Ela(g)
O
o

3-layer neural network:
U V
-

score ::Vma(a(

000009
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Depth
h// h///

h h'
D O O O fo(z)
@ @ @ @

e Hierarchical feature representations

000009 =

Intuitions:

e Can simulate a bounded computation logic circuit (original moti-
vation from McCulloch/Pitts, 1943)

e Learn this computation (and potentially more because networks
are real-valued)

e Formal theory/understanding is still incomplete

e Some hypotheses emerging: double descent, lottery ticket hypoth-
esls
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[figure from Honglak Lee]
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What's learned?

3rd layer
“Objects”

2nd layer
“Object parts”

1st layer
HEdgesﬂ

Pixels
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Review: optimization

Regression:

Loss(z,y,0) = (fo(x) — y)?

L4
—‘Q Key idea: minimize training loss

TrainLoss(0) = ! Z Loss(x,y, 0)

|Dtrain | (x,y) E,Z)train

min TrainLoss(#)

0cRd

- Algorithm: stochastic gradient descent

Fort=1,...,1"
For (z,vy) € Dyain:
0 < 60 —nVoloss(x,y,0)
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Training

e Non-convex optimization
e No theoretical guarantees that it works

e Before 2000s, empirically very difficult to get working
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What's different today

Computation (time/memory)
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Information (data)
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How to make it work

More hidden units (over-parameterization)
Adaptive step sizes (AdaGrad, Adam)
Dropout to guard against overfitting
Careful initialization (pre-training)

Batch normalization

Model and optimization are tightly coupled
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7 Summary

e Deep networks learn hierarchical representations of data

e Train via SGD, use backpropagation to compute gradients

e Non-convex optimization, but works empirically given enough com-
pute and data
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Motivation

0000000000000 0 =

e Observation: images are not arbitrary vectors

e Goal: leverage spatial structure of images (translation equivari-
ance)
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[figure from Andrej Karpathy]

Prior knowledge

e Local connectivity: each hidden unit operates on a local image
patch (3 instead of 7 connections per hidden unit)

e Parameter sharing: processing of each image patch is same (3
parameters instead of 3 - 5)

e Intuition: try to match a pattern in image
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Convolutional layers

Input Layer 1 Layer n
Image

In General

e Instead of vector to vector, we do volume to volume

[Andrej Karpathy's demo]
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[figure from Andrej Karpathy]

Max-pooling

Single depth slice

dl1[1]2)4
max pool with 2x2 filters
oaimeN 7 | 8 and stride 2 6 | 8
3 | 2 3| 4
1 | 2
y

e Intuition: test if there exists a pattern in neighborhood

e Reduce computation, prevent overfitting
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Example of function evaluation

RELU RELU

CONV
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[Andrej Karpathy's demo]
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[Krizhevsky et al., 2012]

AlexNet

48

Non-linearity: use RelU (max(z

. : s 3[_ L :_".‘_'_ y
- N e
e i" 178 2048 2048 dense
57 128 — —
- N AN \ 13 \ \13
e (=Nl N
—~ El 13 dense | [dense
& | _'_';_'_'::::-.-.~-—3l '
’ 182 192 128 Max | ||
Max 178 Max pooling 2048 2048
pooling pooling

0)) instead of logistic

1000

Data augmentation: translate, horizontal reflection, vary intensity,
dropout (guard against overfitting)

Computation: parallelize across two GPUs (6 days)

Results on ImageNet: 16.4% error (next best was 25.8%)
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[He et al. 2015]

Residual networks

X
weight layer
F(x) l relu <
weight layer identity

e Key idea: make it easy to learn the iden-
tity (good inductive bias)

e Enables training 152 layer networks

e Results on ImageNet: 3.6% error
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Summary

Vg

e Key idea 1: locality of connections, capture spatial structure

e Key idea 2: Filters share parameters, capture translational equiv-
ariance

e Depth matters

e Applications to images, text, Go, drug design, etc.
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Motivation: modeling sequences

Sentences:

L1 L2 r3 T4 s Te L7 I8 X9 I10 T11 X12

Paris Talks Set Stage for Action as

Time series:

Risks to the C(limate Rise
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Sequence models

Formula S; = fw(si—1,x;)
Network A )5
X

Computation  eeo
Graph
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Language models with RNNs

>
—_
>
[\
>
w
>
Ny

O O © ©
@ @ @ @
@ @ @ @
@ @ @ @
O O @ @
I T2 I3 Ty

h1 = Encode(x1)

o ~ Decode(hi) Update context vector:

hy = Encode(hq, x2) hy = Encode(h;_1, ;)
hs) Predict next character:

hs = Encode(hs, z3) zi+1 = Decode(f;)

x4 ~ Decode(h ) context h; compresses xq, . .

. Lt

(
(
(
x3 ~ Decode(
(
(
(

h4 = Encode(hs, x4)
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[Elman, 1990]

Simple recurrent network
W@
V.

p(Tiy1)
Decode(h;) ~ softmax IE

Lt
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Vanishing /exploding gradient problem

Short Ae‘oen clamcy |onJ ACfendqncy

e RNNs can have long or short dependencies

e When there are long dependencies, gradients have trouble back-
propagating through
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Vanishing /exploding gradient problem

Chain rule => multiplications

Can explode or shrink!
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[Schmidhuber & Hochreiter, 1997]

Long Short Term Memory (LSTM)

API:
(heycr) = LSTM(hy_1, ¢ 1, x¢)
Input gate:
iy = o(Wizy + Uihi—1 + Vicy—1 + b;)
Forget gate (initialize with b large, so f; close to 1):
ft =0Wsxy + Ushi—1 + Vici—1 + by)
Cell: additive combination of RNN update with previous cell
¢t = i¢ © tanh(Wewy + Uchi—1 +be) + fi © ci—1
Output gate:
oy = c(Woxy + Ushs_1 + Vocr + by)

Hidden state:
hy = 0; ® tanh(c;)

CS221 / Spring 2020 / Finn & Anari

38



[Schmidhuber & Hochreiter, 1997]

Long Short Term Memory (LSTM)

ovtpvt 7.7 :
P O Computation:

(1) Prepare cell inputs

(2) Prepare new state inputs
(3) Compute new state

(4) Compute output

™
Lh

new cell State-

ConS+an+ error

Carovsel

Prewovs

cell State
inPy‘f jo\""-—- : ‘FOP3¢+ ﬂ‘\"‘(
candidate_| - ' i -ovtpvt apte

cell State

memory 3q+¢" _ -
New state is additive

combination with old state,
which helps avoid gradient
ISsues

previovs inout
CS221 / Spring 2020 / Finn & Anari  OUtpvt i
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[from Andrej Karpathy's blog]

Character-level language modeling

Sampled output:

Naturalism and decision for the majority of Arab countries’ capitalide was
grounded by the Irish language by [[John Clair|], [[An Imperial Japanese
Revolt|], associated with Guangzham’s sovereignty. His generals were
the powerful ruler of the Portugal in the [[Protestant Immineners]], which
could be said to be directly in Cantonese Communication, which followed
a ceremony and set inspired prison, training. The emperor travelled back
to [[Antioch, Perth, October 25—21]] to note, the Kingdom of Costa
Rica, unsuccessful fashioned the [[Thrales|], [[Cynth’s Dajoard]], known
in western [[Scotland]|, near Italy to the conquest of India with the
conflict.
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[from Andrej Karpathy's blog]

Cell sensitive to positi

e fact
plans for

the Berezina lies in t
the
nly possible
e a

the fallacy of all

e soundness of the o
lutuz v an e general mass of th rmy
to follow t enemy up The French crowd
speed and all its energy was directed
ed like a wounded animal and it was impossi
: shown not so much by the arrangements it
hat took place at the bridges. When the
people from Moscow and women with children
Al l=-carried on by wvis inertiae->=
the

ice-covered water andididiEEE

Cell that turns on inside quotes:

Cell that robustly activates inside if statements:

]
A large portion of cells are not easily interpretable. Here is a typical example:
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[Sutskever et al., 2014]

Sequence-to-sequence model

Motivation: machine translation

x:Je crains 'homme de un seul livre.

y: Fear the man of one book.

N
o~
<
ot
N
(@)

o 1\1\1
@ @ @ @) O @)
@ @ @ @ @ @
o o .o e .o .o
@ @ @ @ @ @
@ @ @ @ o @
) CJ ) CJ ) @
T T T hy hs he
X1 L2 X3

Read in a sentence first, output according to RNN:

hy = Encode(hs_1,2+ or ys—1), y¢ = Decode(hy)
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Motivation: long sentences — compress to finite dimensional vector?

CS221 / Spring 2020 / Finn & Anari

Attention-based models

Eine Folge von Ereignissen bewirkte, dass aus Beethovens Studienreise

nach Wien ein dauerhafter und endgiiltiger Aufenthalt wurde. Kurz nach

Beethovens Ankunft, am 18. Dezember 1792, starb sein Vater. 1794 -
besetzten franzosische Truppen das Rheinland, und der kurftirstliche Hof

musste fliehen.

—‘@' Key idea: attention

Learn to look back at your notes.

00000
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[Bahdanau et al., 2015]

Attention-based models

Ya Ys Ye
AN
@ @ @ = @ @
@ @ @ @ @ @
@ - |© ~|© ~|©® ~|© . |©
@ @ @ @ @ @
@ @ @ @ @ @
) ) & ) & )
T T T hy hs he
I Io I3

Distribution over input positions:

a; = softmax(|Attend(h1, ht—1), ..., Attend(hp, hi_1)])
Generate with attended input:

hy = Encode(h;_1,y¢_1, Zf:l ath;)

Transformer models: attention only — no RNN!

CS221 / Spring 2020 / Finn & Anari
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[Bahdanau et al., 2015]
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Machine translation

I=

@ 5

= 1]

Q o
o @ 4 9
c O Cc - 3
= m © = W

K
accord

Sur

la

zone
économique
européenne
a

eté

signé

en

ao(t

1992

<end>

Economic
Area

was

signed
in

August
1992

<end=>
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[Xu et al., 2015]

Image captioning

A little girl sitting on a bed with
a teddy bear.
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A group of people sitting on a boat
in the water.
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Summary

e Recurrent neural networks: model sequences (non-linear version of
Kalman filter or HMM)

e Logic intuition: learning a program with a for loop (reduce)

e LSTMs mitigate the vanishing gradient problem

e Attention-based models: when only part of input is relevant at a
time

e Newer models with "external memory”: memory networks, neural
Turing machines
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Motivation

e Deep neural networks require lot of data

e Sometimes not very much labeled data, but plenty of unlabeled
data (text, images, videos)

e Humans rarely get direct supervision; can learn from raw sensory
information?

CS221 / Spring 2020 / Finn & Anari
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Autoencoders

Analogy:
AAAABBBBB=-»4As 5Bs=—> AAAABBBBB

—‘Q’ Key idea: autoencoders

If we can compress a data point and still reconstruct it, then we
have learned something generally useful.

General framework:

=

h

Encode —> Decode m=—p-

minimize ||z — 2%

000000 =

IOOij@
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Principal component analysis

Input: points z1,...,2,

UT
Encode(x) =

(assume x;'s are mean zero and U is orthogonal)

Decode(h) =

@0000Q =

PCA objective:

n

minimize Z |z; — Decode(Encode(x;))]|?
i=1
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Non-linear autoencoders

Non-linear transformation (e.g., logistic function):

. [

D}/ Encode(x)
/ Decode(h)

1 |
—6 -4 -2 0 2 4 6

W’ b’
|44 b
B

oWz +b)
o(W'h + 1)

| oss function:

minimize ||z — Decode(Encode(x))||?
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Autoencoders

Increase dimensionality of hidden dimension:

Encode =i Decode i

IOOO‘OOOI =
|OO(1000I Ny
000009 =

e Problem: learning nothing — just set Encode, Decode to identity
function!
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Non-linear autoencoders

Non-linear transformation (e.g., logistic function):

14  ——

/ Encode(z) = o(Wa + b)
/ Decode(h) = o(W'h + b')

-6 -4 -2 0 2 4

: W’ b’
|44 b
B

Loss function:
minimize ||z — Decode(Encode(x))||?

Key: Compressing h (e.g. low-dim, sparse) prevents identity

CS221 / Spring 2020 / Finn & Anari
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Denoising autoencoders

Corrupt(x)
o h

- Fncode —> Decode =i

000000 =»

000000

Types of noise:
e Blankout: Corrupt(|1,2,3,4]) = |0,2, 3, 0]
e Gaussian: Corrupt([1,2,3,4]) = [1.1,1.9,3.3,4.2]
Objective:
minimize ||z — Decode(Encode(Corrupt(x)))||?

Algorithm: pick example, add fresh noise, SGD update

Key: noise makes life harder, identity function no longer good

CS221 / Spring 2020 / Finn & Anari
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[Figure 7 of Vincent et al. (2010)]

Denoising autoencoders

MNIST: 60,000 images of digits (784 dimensions)

Q) — MU e [rof T
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s A W R R T E L N
O e (G TN oo o
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O~ dle ~%

O —ed DTl O 0y &

200 learned filters (rows of W):
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Variational autoencoders

Motivation: learn a latent-variable model

E-step in EM: computing p(h | x) is intractable

Solution: approximate using a neural network g(h | x)

CS221 / Spring 2020 / Finn & Anari
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Variational autoencoders

h

Encoder ¢q —> Decoder p

IOOOlOOOI &
000000 &

Objective: maximize

logp(r) > Egna[logp(z | h)] — KL(q(h | x)||p(h))

Algorithm:
e Sample h from encoder ¢, gradient update on ¢ and p

e Reparametrization trick [Kingma/Welling, 2014]
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[Rajpurkar+ 2016]

Reading comprehension (SQuAD)

In meteorology, precipitation is any product
of the condensation of atmospheric water vapor
that falls under gravity. The main forms of pre-
cipitation include drizzle, rain, sleet, snow, grau-
pel and hail... Precipitation forms as smaller
droplets coalesce via collision with other rain
drops or ice crystals within a cloud. Short, in-
tense periods of rain in scattered locations are
called "showers™.

What causes precipitation to fall?
gravity

What is another main form of precipitation be-
sides drizzle, rain, snow, sleet and hail?
graupel

Where do water droplets collide with ice crystals
to form precipitation?
within a cloud
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Raw text

Stanford University (officially Leland Stanford Junior University,['%] colloquially "the Farm™) is a private research university in Stanford, California. Stanford is known for its academic strength, wealth, proximity to
Silicon Valley, and ranking as one of the world's top universities.[1111211131[141[13]

The university was founded in 1885 by Leland and Jane Stanford in memory of their only child, Leland Stanford Jr., who had died of typhoid fever at age 15 the previous year. Stanford was a U.S. Senator and former
Govemnar of California who made his fortune as a railroad tycoon. The school admitted its first students on October 1, 1891,1211%! as a coeducational and non-denominational institution.

Stanford University struggled financially after the death of Leland Stanford in 1893 and again after much of the campus was damaged by the 1906 San Francisco earthquake.!'®] Following World War II, Provost
Frederick Terman supported faculty and graduates’ entrepreneurialism to build self-sufficient local industry in what would later be known as Silicon Valley.['”! The university is also one of the top fundraising institutions
in the country, becoming the first school to raise more than a billion dollars in a year.['€]

The university is organized around three traditional schools consisting of 40 academic departments at the undergraduate and graduate level and four professional schools that focus on graduate programs in Law,
Medicine, Education and Business. Stanford's undergraduate program is one of the top three most selective in the United States by acceptance rate ["9201211122123] Stydents compete in 36 varsity sports, and the
university is one of two private institutions in the Division | FBS Pac-12 Conference. It has gained 117 NCAA team championships,2¥] the most for a university. Stanford athletes have won 512 individual
championships, 1?9 and Stanford has won the NACDA Directors' Cup for 23 consecutive years, beginning in 1994-1995.[28] In addition, Stanford students and alumni have won 270 Olympic medals including 139 gold
medals.[27]

3.3 billion words
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labeled
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Unsupervised pre-training

unlabeled
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[Devlin+ 2018]

BERT

Paris Talks ___ Stage for _____ as Risks to ___ Climate Rise

Paris Talks Set Stage for Action as Risks to the Climate Rise

e Tasks: fill in words, predict whether is next sentence

e Trained on 3.3B words, 4 days on 64 TPUs
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BERT

Start/End Span

Question Paragraph
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Rank

Oct 03, 2018

Oct 05, 2018

Jul 11, 2018

4
Jul 08, 2018

]
Mar 19, 2018

Model

Human Performance
Stanford University
(Rajpurkar et al. '148)

BERT (ensemble)
Google Al

BERT (single model)
Google AL

ninet (ensemble)
Microsoft Research Asia

ninet (ensemble)
Microsoft Research Asia

QAMet (ensemble)
Goaogle Brain & CMU

r-net (ensemble)
Microsoft Research Asia

QAMet (ensemble)
Google Brain & CMU

nlnet (single model)
Microsoft Research Asia

MARS (ensemble)
YLANMEFUDAD research NLP

MARS [single model)
YLUANMFUDAQ research NLP

EM

82.304

87.433

85.083

85.356

85.954

84.454

84.003

83.877

83.4568

83.982

83.185

F1

291.221

93.160

91.835

91.202

91.677

20.420

20.147

89.737

20.133

89.796

89.547
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7 Unsupervised learning

e Principle: make up prediction tasks (e.g., x given x or context)
e Hard task — pressure to learn something

e Loss minimzation using SGD

e Discriminatively fine tune: initialize feedforward neural network
and backpropagate to optimize task accuracy

e How far can one push this?

CS221 / Spring 2020 / Finn & Anari
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Getting things to work

Better optimization algorithms: SGD, SGD+momentum, AdaGrad,
AdaDelta, momentum, Nesterov, Adam

Tricks: initialization, gradient clipping, batch normalization, dropout

More hyperparameter tuning: step sizes, architectures

More data: larger, broader datasets

Better hardware: GPUs, TPUs

m

GPU
MULTIPLE CORES THOUSAMDS OF CORES

...wait for a long time...
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Theory: why does it work?

Two questions:

e Approximation: why are neural networks good hypothesis classes?

e Optimization: why can SGD optimize a high-dimensional non-
convex problem?

Partial answers:

e 1-layer neural networks can approximate any continuous function
on compact set [Cybenko, 1989; Barron, 1993]

e Generate random features works too [Rahimi/Recht, 2009; Andoni
et. al, 2014]

e Use statistical physics to analyze loss surfaces [Choromanska et
al., 2014]
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Phenomena
Fixed vectors
Spatial structure

Sequence

Sequence-to-sequence

Unsupervised
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Summary

|deas
Feedforward NNs
convolutional NNs

recurrent NNs
LSTMs

encoder-decoder
attention-based models

autoencoders
variational autoencoders

any auxiliary task
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Outlook

Extensibility: able to compose modules

Learning programs: think about analogy with a computer
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LSTM

Attend

Encode
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