
Lecture 18: Deep Learning

CS221 / Spring 2020 / Finn & Anari

Reminders

• Projects due on Wednesday at noon PT (no late days allowed, to
give time for grading).

• Exam regrade requests due Wednesday at midnight PT.

CS221 / Spring 2020 / Finn & Anari 1

A brief history

• 1943: neural networks ⇔ logical circuits (McCulloch/Pitts)

• 1949: ”cells that fire together wire together” learning rule (Hebb)

• 1969: theoretical limitations of neural networks (Minsky/Papert)

• 1974: backpropagation for training multi-layer networks (Werbos)

• 1986: popularization of backpropagation (Rumelhardt, Hinton,
Williams)

CS221 / Spring 2020 / Finn & Anari 2

A brief history

• 1980: Neocognitron, a.k.a. convolutional neural networks
(Fukushima)

• 1989: backpropagation on convolutional neural networks (LeCun)

• 1990: recurrent neural networks (Elman)

• 1997: Long Short-Term Memory networks (Hochre-
iter/Schmidhuber)

• 2006: unsupervised layerwise training of deep networks (Hinton et
al.)

CS221 / Spring 2020 / Finn & Anari 3

Google Trends

Query: deep learning

CS221 / Spring 2020 / Finn & Anari 4

Speech recognition (2009-2011)

• Steep drop in WER due to deep learning

• IBM, Google, Microsoft all switched over from GMM-HMM

[figure from Li Deng]

CS221 / Spring 2020 / Finn & Anari 5

Object recognition (2012)

• Landslide win in ILSVRC object recognition competition

• Computer vision community switched to CNNs

• Simpler than hand-engineered features (SIFT)

[Krizhevsky et al., 2012, a.k.a. AlexNet]

CS221 / Spring 2020 / Finn & Anari 6

Machine translation (2016)

• Decisive wins have taken longer to achieve in NLP (words are
meaningful in a way that pixels are not)

• Current state-of-the-art in machine translation

CS221 / Spring 2020 / Finn & Anari 7

Go (2016)

• Defeated world champion Le Sedol 4-1

• Simple architecture (in contrast, DeepBlue was search + hand-
crafted heuristics)

• 2017: AlphaGoZero does not require human expert games as su-
pervision

CS221 / Spring 2020 / Finn & Anari 8

What is deep learning?

A family of techniques for learning compositional vector representations
of complex data.

CS221 / Spring 2020 / Finn & Anari 9

Roadmap

Feedforward neural networks

Convolutional networks

Sequence models

Unsupervised learning

Final remarks

CS221 / Spring 2020 / Finn & Anari 10

Review: linear predictors

x1

x2

x3

fθ(x)

w

Output:

fθ(x) = w · x

Parameters: θ = w

CS221 / Spring 2020 / Finn & Anari 11

Review: neural networks

σ

σ

x1

x2

x3

h1

h2

V
w

fθ(x)

Intermediate hidden units:

hj(x) = σ(vj · x) σ(z) = (1 + e−z)−1

Output:

fθ(x) = w · h(x)

Parameters: θ = (V,w)

CS221 / Spring 2020 / Finn & Anari 12

Deep neural networks

1-layer neural network:

score =
w>

x

2-layer neural network:

score =
w>

σ(

V
x

)

3-layer neural network:

score =
w>

σ(

U

σ(

V
x

))

...
CS221 / Spring 2020 / Finn & Anari 13

Depth
x

h h′ h′′ h′′′

fθ(x)

Intuitions:

• Hierarchical feature representations

• Can simulate a bounded computation logic circuit (original moti-
vation from McCulloch/Pitts, 1943)

• Learn this computation (and potentially more because networks
are real-valued)

• Formal theory/understanding is still incomplete

• Some hypotheses emerging: double descent, lottery ticket hypoth-
esis

CS221 / Spring 2020 / Finn & Anari 14

What’s learned?
[figure from Honglak Lee]

CS221 / Spring 2020 / Finn & Anari 15

Review: optimization

Regression:

Loss(x, y, θ) = (fθ(x)− y)2

Key idea: minimize training loss

TrainLoss(θ) =
1

|Dtrain|
∑

(x,y)∈Dtrain

Loss(x, y, θ)

min
θ∈Rd

TrainLoss(θ)

Algorithm: stochastic gradient descent

For t = 1, . . . , T :

For (x, y) ∈ Dtrain:

θ ← θ − ηt∇θLoss(x, y, θ)

CS221 / Spring 2020 / Finn & Anari 16

Training

• Non-convex optimization

• No theoretical guarantees that it works

• Before 2000s, empirically very difficult to get working

CS221 / Spring 2020 / Finn & Anari 17

What’s different today

Computation (time/memory) Information (data)

CS221 / Spring 2020 / Finn & Anari 18

How to make it work

• More hidden units (over-parameterization)

• Adaptive step sizes (AdaGrad, Adam)

• Dropout to guard against overfitting

• Careful initialization (pre-training)

• Batch normalization

Model and optimization are tightly coupled
CS221 / Spring 2020 / Finn & Anari 19

Summary

• Deep networks learn hierarchical representations of data

• Train via SGD, use backpropagation to compute gradients

• Non-convex optimization, but works empirically given enough com-
pute and data

CS221 / Spring 2020 / Finn & Anari 20

Roadmap

Feedforward neural networks

Convolutional networks

Sequence models

Unsupervised learning

Final remarks

CS221 / Spring 2020 / Finn & Anari 21

Motivation

W

x

• Observation: images are not arbitrary vectors

• Goal: leverage spatial structure of images (translation equivari-
ance)

CS221 / Spring 2020 / Finn & Anari 22

Idea: Convolutions

CS221 / Spring 2020 / Finn & Anari 23

Prior knowledge

• Local connectivity: each hidden unit operates on a local image
patch (3 instead of 7 connections per hidden unit)

• Parameter sharing: processing of each image patch is same (3
parameters instead of 3 · 5)

• Intuition: try to match a pattern in image

[figure from Andrej Karpathy]

CS221 / Spring 2020 / Finn & Anari 24

Convolutional layers

• Instead of vector to vector, we do volume to volume

[Andrej Karpathy’s demo]

CS221 / Spring 2020 / Finn & Anari 25

Max-pooling

• Intuition: test if there exists a pattern in neighborhood

• Reduce computation, prevent overfitting

[figure from Andrej Karpathy]

CS221 / Spring 2020 / Finn & Anari 26

Example of function evaluation

[Andrej Karpathy’s demo]

CS221 / Spring 2020 / Finn & Anari 27

AlexNet

• Non-linearity: use RelU (max(z, 0)) instead of logistic

• Data augmentation: translate, horizontal reflection, vary intensity,
dropout (guard against overfitting)

• Computation: parallelize across two GPUs (6 days)

• Results on ImageNet: 16.4% error (next best was 25.8%)

[Krizhevsky et al., 2012]

CS221 / Spring 2020 / Finn & Anari 28

Residual networks

x 7→ σ(Wx) + x

• Key idea: make it easy to learn the iden-
tity (good inductive bias)

• Enables training 152 layer networks

• Results on ImageNet: 3.6% error

[He et al. 2015]

CS221 / Spring 2020 / Finn & Anari 29

Summary

• Key idea 1: locality of connections, capture spatial structure

• Key idea 2: Filters share parameters, capture translational equiv-
ariance

• Depth matters

• Applications to images, text, Go, drug design, etc.

CS221 / Spring 2020 / Finn & Anari 30

Roadmap

Feedforward neural networks

Convolutional networks

Sequence models

Unsupervised learning

Final remarks

CS221 / Spring 2020 / Finn & Anari 31

Motivation: modeling sequences

Sentences:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

Paris Talks Set Stage for Action as Risks to the Climate Rise

Time series:

CS221 / Spring 2020 / Finn & Anari 32

Sequence models

CS221 / Spring 2020 / Finn & Anari 33

Language models with RNNs

x1 x2 x3 x4

h1 h2 h3 h4

h1 = Encode(x1)

x2 ∼ Decode(h1)

h2 = Encode(h1, x2)

x3 ∼ Decode(h2)

h3 = Encode(h2, x3)

x4 ∼ Decode(h3)

h4 = Encode(h3, x4)

Update context vector:

ht = Encode(ht−1, xt)

Predict next character:

xt+1 = Decode(ht)

context ht compresses x1, . . . xt

CS221 / Spring 2020 / Finn & Anari 34

Simple recurrent network

x1 x2 x3 x4

h1 h2 h3 h4

Encode(ht−1, xt) = σ(

V ht−1

+

W
xt

) =

ht

Decode(ht) ∼ softmax(

W ′

ht

) =

p(xt+1)

[Elman, 1990]

CS221 / Spring 2020 / Finn & Anari 35

Vanishing/exploding gradient problem

• RNNs can have long or short dependencies

• When there are long dependencies, gradients have trouble back-
propagating through

CS221 / Spring 2020 / Finn & Anari 36

Vanishing/exploding gradient problem

CS221 / Spring 2020 / Finn & Anari 37

Long Short Term Memory (LSTM)

API:

(ht, ct) = LSTM(ht−1, ct−1, xt)

Input gate:

it = σ(Wixt + Uiht−1 + Vict−1 + bi)

Forget gate (initialize with bf large, so ft close to 1):

ft = σ(Wfxt + Ufht−1 + Vfct−1 + bf)

Cell: additive combination of RNN update with previous cell

ct = it � tanh(Wcxt + Ucht−1 + bc) + ft � ct−1

Output gate:

ot = σ(Woxt + Uoht−1 + Voct + bo)

Hidden state:

ht = ot � tanh(ct)

[Schmidhuber & Hochreiter, 1997]

CS221 / Spring 2020 / Finn & Anari 38

Long Short Term Memory (LSTM)
[Schmidhuber & Hochreiter, 1997]

CS221 / Spring 2020 / Finn & Anari 39

Character-level language modeling

Sampled output:

Naturalism and decision for the majority of Arab countries’ capitalide was
grounded by the Irish language by [[John Clair]], [[An Imperial Japanese
Revolt]], associated with Guangzham’s sovereignty. His generals were
the powerful ruler of the Portugal in the [[Protestant Immineners]], which
could be said to be directly in Cantonese Communication, which followed
a ceremony and set inspired prison, training. The emperor travelled back
to [[Antioch, Perth, October 25—21]] to note, the Kingdom of Costa
Rica, unsuccessful fashioned the [[Thrales]], [[Cynth’s Dajoard]], known
in western [[Scotland]], near Italy to the conquest of India with the
conflict.

[from Andrej Karpathy’s blog]

CS221 / Spring 2020 / Finn & Anari 40

[from Andrej Karpathy’s blog]

CS221 / Spring 2020 / Finn & Anari 41

Sequence-to-sequence model

Motivation: machine translation

x:Je crains l’homme de un seul livre.

y:Fear the man of one book.

y4 y5 y6

x1 x2 x3

h1 h2 h3

h4 h5 h6

Read in a sentence first, output according to RNN:

ht = Encode(ht−1, xt or yt−1), yt = Decode(ht)

[Sutskever et al., 2014]

CS221 / Spring 2020 / Finn & Anari 42

Attention-based models

Motivation: long sentences — compress to finite dimensional vector?

Eine Folge von Ereignissen bewirkte, dass aus Beethovens Studienreise
nach Wien ein dauerhafter und endgültiger Aufenthalt wurde. Kurz nach
Beethovens Ankunft, am 18. Dezember 1792, starb sein Vater. 1794
besetzten französische Truppen das Rheinland, und der kurfürstliche Hof
musste fliehen.

Key idea: attention

Learn to look back at your notes.

CS221 / Spring 2020 / Finn & Anari 43

Attention-based models

y4 y5 y6

x1 x2 x3

h1 h2 h3

h4 h5 h6

Distribution over input positions:

αt = softmax([Attend(h1, ht−1), . . . ,Attend(hL, ht−1)])

Generate with attended input:

ht = Encode(ht−1, yt−1,
∑L

j=1 αthj)

Transformer models: attention only – no RNN!

[Bahdanau et al., 2015]

CS221 / Spring 2020 / Finn & Anari 44

Machine translation
[Bahdanau et al., 2015]

CS221 / Spring 2020 / Finn & Anari 45

Image captioning
[Xu et al., 2015]

CS221 / Spring 2020 / Finn & Anari 46

Summary

• Recurrent neural networks: model sequences (non-linear version of
Kalman filter or HMM)

• Logic intuition: learning a program with a for loop (reduce)

• LSTMs mitigate the vanishing gradient problem

• Attention-based models: when only part of input is relevant at a
time

• Newer models with ”external memory”: memory networks, neural
Turing machines

CS221 / Spring 2020 / Finn & Anari 47

Roadmap

Feedforward neural networks

Convolutional networks

Sequence models

Unsupervised learning

Final remarks

CS221 / Spring 2020 / Finn & Anari 48

Motivation

• Deep neural networks require lot of data

• Sometimes not very much labeled data, but plenty of unlabeled
data (text, images, videos)

• Humans rarely get direct supervision; can learn from raw sensory
information?

CS221 / Spring 2020 / Finn & Anari 49

Autoencoders

Analogy:

A A A A B B B B B 4 A’s, 5 B’s A A A A B B B B B

Key idea: autoencoders

If we can compress a data point and still reconstruct it, then we
have learned something generally useful.

General framework:
x

Encode

h

Decode

x̂

minimize ‖x− x̂‖2

CS221 / Spring 2020 / Finn & Anari 50

Principal component analysis

Input: points x1, . . . , xn

Encode(x) =

U>
x

Decode(h) =

U
h

(assume xi’s are mean zero and U is orthogonal)

PCA objective:

minimize
n∑

i=1

‖xi − Decode(Encode(xi))‖2

CS221 / Spring 2020 / Finn & Anari 51

Non-linear autoencoders

Non-linear transformation (e.g., logistic function):

Encode(x) = σ(Wx+ b)

Decode(h) = σ(W ′h+ b′)

W b
W ′ b′

Loss function:

minimize ‖x− Decode(Encode(x))‖2

CS221 / Spring 2020 / Finn & Anari 52

Autoencoders

Increase dimensionality of hidden dimension:

x

Encode

h

Decode

x̂

• Problem: learning nothing — just set Encode,Decode to identity
function!

CS221 / Spring 2020 / Finn & Anari 53

Non-linear autoencoders

Non-linear transformation (e.g., logistic function):

Encode(x) = σ(Wx+ b)

Decode(h) = σ(W ′h+ b′)

W b
W ′ b′

Loss function:

minimize ‖x− Decode(Encode(x))‖2

Key: Compressing h (e.g. low-dim, sparse) prevents identity

CS221 / Spring 2020 / Finn & Anari 54

Denoising autoencoders
Corrupt(x)

Encode

h

Decode

x̂

Types of noise:

• Blankout: Corrupt([1, 2, 3, 4]) = [0, 2, 3, 0]

• Gaussian: Corrupt([1, 2, 3, 4]) = [1.1, 1.9, 3.3, 4.2]

Objective:

minimize ‖x− Decode(Encode(Corrupt(x)))‖2

Algorithm: pick example, add fresh noise, SGD update

Key: noise makes life harder, identity function no longer good

CS221 / Spring 2020 / Finn & Anari 55

Denoising autoencoders

MNIST: 60,000 images of digits (784 dimensions)

200 learned filters (rows of W):

W

[Figure 7 of Vincent et al. (2010)]

CS221 / Spring 2020 / Finn & Anari 56

Variational autoencoders

Motivation: learn a latent-variable model

h

x

p(h, x) = p(h)p(x | h)

E-step in EM: computing p(h | x) is intractable

Solution: approximate using a neural network q(h | x)

CS221 / Spring 2020 / Finn & Anari 57

Variational autoencoders
x

Encoder q

h

Decoder p

x̂

Objective: maximize

log p(x) ≥ Eq(h|x)[log p(x | h)]− KL(q(h | x)||p(h))

Algorithm:

• Sample h from encoder q, gradient update on q and p

• Reparametrization trick [Kingma/Welling, 2014]

CS221 / Spring 2020 / Finn & Anari 58

Reading comprehension (SQuAD)

100K examples

[Rajpurkar+ 2016]

CS221 / Spring 2020 / Finn & Anari 59

Raw text

...

3.3 billion words

CS221 / Spring 2020 / Finn & Anari 60

Unsupervised pre-training

labeled unlabeled

CS221 / Spring 2020 / Finn & Anari 61

BERT

Paris Talks Stage for as Risks to Climate Rise

Paris Talks Set Stage for Action as Risks to the Climate Rise

• Tasks: fill in words, predict whether is next sentence

• Trained on 3.3B words, 4 days on 64 TPUs

[Devlin+ 2018]

CS221 / Spring 2020 / Finn & Anari 62

BERT

CS221 / Spring 2020 / Finn & Anari 63

CS221 / Spring 2020 / Finn & Anari 64

Unsupervised learning

• Principle: make up prediction tasks (e.g., x given x or context)

• Hard task → pressure to learn something

• Loss minimzation using SGD

• Discriminatively fine tune: initialize feedforward neural network
and backpropagate to optimize task accuracy

• How far can one push this?

CS221 / Spring 2020 / Finn & Anari 65

Roadmap

Feedforward neural networks

Convolutional networks

Sequence models

Unsupervised learning

Final remarks

CS221 / Spring 2020 / Finn & Anari 66

Getting things to work

Better optimization algorithms: SGD, SGD+momentum, AdaGrad,
AdaDelta, momentum, Nesterov, Adam

Tricks: initialization, gradient clipping, batch normalization, dropout

More hyperparameter tuning: step sizes, architectures

More data: larger, broader datasets

Better hardware: GPUs, TPUs

...wait for a long time...

CS221 / Spring 2020 / Finn & Anari 67

Theory: why does it work?

Two questions:

• Approximation: why are neural networks good hypothesis classes?

• Optimization: why can SGD optimize a high-dimensional non-
convex problem?

Partial answers:

• 1-layer neural networks can approximate any continuous function
on compact set [Cybenko, 1989; Barron, 1993]

• Generate random features works too [Rahimi/Recht, 2009; Andoni
et. al, 2014]

• Use statistical physics to analyze loss surfaces [Choromanska et
al., 2014]

CS221 / Spring 2020 / Finn & Anari 68

Summary

Phenomena Ideas

Fixed vectors Feedforward NNs

Spatial structure convolutional NNs

Sequence recurrent NNs

LSTMs

Sequence-to-sequence encoder-decoder

attention-based models

Unsupervised autoencoders

variational autoencoders

any auxiliary task
CS221 / Spring 2020 / Finn & Anari 69

Outlook

Extensibility: able to compose modules

LSTM Attend Encode

Learning programs: think about analogy with a computer

x fθ y

CS221 / Spring 2020 / Finn & Anari 70

