
Lecture 1: Overview

CS221 / Spring 2020 / Finn & Anari

CS221 / Spring 2020 / Finn & Anari 1

Our Priorities and Principles

• Sad that we are not together on campus.

• It will not be the same.

• We prioritize supporting each other, as humans.

• We will prioritize clear communication, accessible content and re-
sources.

• We will remain flexible and adjust to the situation

CS221 / Spring 2020 / Finn & Anari 2

• It will not be the same as a live lecture, but we are going to do what we can to create a good experience.

• We recognize that many of you may be going through really challenging situations right now.

• Our priority is to support each other, as humans, and we ask you to do the same.

• Because we know that everyone is going through different situations, we will prioritize clear communication,
accessibility, and remain flexible.

The Plan for Lectures

• Live zoom lectures, recording posted on canvas afterward

• Chat for class-wide communication, Q&A for questions.

• TAs will monitor Q&A, moderate, answer questions.

• Unanswered questions will be answered on Piazza after class.

• Ice breaker (in chat): Why do you want to learn about AI in 3
words?

CS221 / Spring 2020 / Finn & Anari 4

• Recording this so that folks in other timezones can see it.

• We encourage you to come to lecture if possible

• TAs will stick around after class to answer further questions.

Announcements

• Section: this Thursday, overview of foundations

• Homework foundations is out, due next Tuesday 11pm

• Gradescope code will be posted on Piazza

CS221 / Spring 2020 / Finn & Anari 6

CS221 / Spring 2020 / Finn & Anari 7

• It is generally not hard to motivate AI these days. There have been some substantial success stories. A lot
of the triumphs have been in games, such as Jeopardy! (IBM Watson, 2011), Go (DeepMind’s AlphaGo,
2016), Dota 2 (OpenAI, 2019), Poker (CMU and Facebook, 2019).

• On non-game tasks, we also have systems that achieve strong performance on reading comprehension,
speech recognition, face recognition, and medical imaging benchmarks.

• Unlike games, however, where the game is the full problem, good performance on a benchmark does not
necessarily translate to good performance on the actual task in the wild. Just because you ace an exam
doesn’t necessarily mean you have perfect understanding or know how to apply that knowledge to real
problems.

• So, while promising, not all of these results translate to real-world applications

CS221 / Spring 2020 / Finn & Anari 9

• From the non-scientific community, we also see speculation about the future: that it will bring about sweep-
ing societal change due to automation, resulting in massive job loss, not unlike the industrial revolution,
or that AI could even surpass human-level intelligence and seek to take control.

• While these are extreme views, there is no doubt that AI is and will continue to be transformational. We
still don’t know exactly what that transformation will look like.

1956

CS221 / Spring 2020 / Finn & Anari 11

Birth of AI

1956: Workshop at Dartmouth College; attendees: John McCarthy, Mar-
vin Minsky, Claude Shannon, etc.

Aim for general principles:

Every aspect of learning or any other feature of intelligence can be so
precisely described that a machine can be made to simulate it.

CS221 / Spring 2020 / Finn & Anari 12

• How did we get here? The name artifical intelligence goes back to a summer in 1956. John McCarthy,
who was then at MIT but later founded the Stanford AI lab, organized a workshop at Dartmouth College
with the leading thinkers of the time, and set out a very bold proposal...to build a system that could do it
all.

Birth of AI, early successes

Checkers (1952): Samuel’s program learned weights and
played at strong amateur level

Problem solving (1955): Newell & Simon’s Logic The-
orist: prove theorems in Principia Mathematica using
search + heuristics; later, General Problem Solver (GPS)

CS221 / Spring 2020 / Finn & Anari 14

• While they did not solve it all, there were a lot of interesting programs that were created: programs that
could play checkers at a strong amateur level, programs that could prove theorems.

• For one theorem Newell and Simon’s Logical Theorist actually found a proof that was more elegant than
what a human came up with. They actually tried to publish a paper on it but it got rejected because it
was not a new theorem; perhaps they failed to realize that the third author was a computer program.

• From the beginning, people like John McCarthy sought generality, thinking of how commonsense reasoning
could be encoded in logic. Newell and Simon’s General Problem Solver promised to solve any problem
(which could be suitably encoded in logic).

Overwhelming optimism...

Machines will be capable, within twenty years, of doing any work a man
can do. —Herbert Simon

Within 10 years the problems of artificial intelligence will be substantially
solved. —Marvin Minsky

I visualize a time when we will be to robots what dogs are to humans,
and I’m rooting for the machines. —Claude Shannon

CS221 / Spring 2020 / Finn & Anari 16

• It was a time of high optimism, with all the leaders of the field, all impressive thinkers, predicting that AI
would be ”solved” in a matter of years.

...underwhelming results

Example: machine translation

The spirit is willing but the flesh is weak.

(Russian)

The vodka is good but the meat is rotten.

1966: ALPAC report cut off government funding for MT, first AI winter

CS221 / Spring 2020 / Finn & Anari 18

• Despite some successes, certain tasks such as machine translation were complete failures, which lead to
the cutting of funding and the first AI winter.

Implications of early era

Problems:

• Limited computation: search space grew exponentially, outpac-
ing hardware (100! ≈ 10157 > 1080)

• Limited information: complexity of AI problems (number of
words, objects, concepts in the world)

Contributions:

• Lisp, garbage collection, time-sharing (John McCarthy)

• Key paradigm: separate modeling and inference

CS221 / Spring 2020 / Finn & Anari 20

• What went wrong? It turns out that the real world is very complex and most AI problems require a lot of
compute and data.

• The hardware at the time was simply too limited both compared to the human brain and computers
available now. Also, casting problems as general logical reasoning meant that the approaches fell prey to
the exponential search space, which no possible amount of compute could really fix.

• Even if you had infinite compute, AI would not be solved. There are simply too many words, objects, and
concepts in the world, and this information has to be somehow encoded in the AI system.

• Though AI was not solved, a few generally useful technologies came out of the effort, such as Lisp (still
the world’s most advanced programming language in a sense).

• One particularly powerful paradigm is the separation between what you want to compute (modeling) and
how to compute it (inference).

Knowledge-based systems (70-80s)

Expert systems: elicit specific domain knowledge from experts in form
of rules:

if [premises] then [conclusion]

CS221 / Spring 2020 / Finn & Anari 22

• In the seventies and eighties, AI researchers looked to knowledge as a way to combat both the limited
computation and information problems. If we could only figure out a way to encode prior knowledge in
these systems, then they would have the necessary information and also have to do less compute.

Knowledge-based systems (70-80s)

DENDRAL: infer molecular structure from mass spectrometry

MYCIN: diagnose blood infections, recommend antibiotics

XCON: convert customer orders into parts specification;
save DEC $40 million a year by 1986

CS221 / Spring 2020 / Finn & Anari 24

• Instead of the solve-it-all optimism from the 1950s, researchers focused on building narrow practical systems
in targeted domains. These became known as expert systems.

Knowledge-based systems

Contributions:

• First real application that impacted industry

• Knowledge helped curb the exponential growth

Problems:

• Knowledge is not deterministic rules, need to model uncertainty

• Requires considerable manual effort to create rules, hard to main-
tain

1987: Collapse of Lisp machines and second AI winter

CS221 / Spring 2020 / Finn & Anari 26

• This was the first time AI had a measurable impact on industry. However, the technology ran into limitations
and failed to scale up to more complex problems. Due to plenty of overpromising and underdelivering, the
field collapsed again.

• We know that this is not the end of the AI story, but actually it is not the beginning. There is another
thread for which we need to go back to 1943.

1943

CS221 / Spring 2020 / Finn & Anari 28

Artificial neural networks

1943: introduced artificial neural networks, connect neu-
ral circuitry and logic (McCulloch/Pitts)

1969: Perceptrons book showed that linear models
could not solve XOR, killed neural nets research (Min-
sky/Papert)

CS221 / Spring 2020 / Finn & Anari 29

• Much of AI’s history was dominated by the logical tradition, but there was another smaller camp, grounded
in neural networks inspired by the brain.

• (Artificial) neural networks were introduced by a famous paper by McCulloch and Pitts, who devised a
simple mathematical model and showed how it could be be used to compute arbitrary logical functions.

• Much of the early work was on understanding the mathematical properties of these networks, since com-
puters were too weak to do anything interesting.

• In 1969, a book was published that explored many mathematical properties of Perceptrons (linear models)
and showed that they could not solve some simple problems such as XOR. Even though this result says
nothing about the capabilities of deeper networks, the book is largely credited with the demise of neural
networks research, and the continued rise of logical AI.

Training networks

1986: popularization of backpropagation for training
multi-layer networks (Rumelhardt, Hinton, Williams)

1989: applied convolutional neural networks to recogniz-
ing handwritten digits for USPS (LeCun)

CS221 / Spring 2020 / Finn & Anari 31

• In the 1980s, there was a renewed interest in neural networks. Backpropagation was rediscovered and
popularized as a way to actually train deep neural networks, and Yann LeCun built a system based on
convolutional neural networks to recognize handwritten digits. This was one of the first successful uses of
neural networks, which was then deployed by the USPS to recognize zip codes.

Deep learning

AlexNet (2012): huge gains in object recognition; trans-
formed computer vision community overnight

AlphaGo (2016): deep reinforcement learning, defeat
world champion Lee Sedol

CS221 / Spring 2020 / Finn & Anari 33

• The real break for neural networks came in the 2010s. With the rise of compute (notably GPUs) and large
datasets such as ImageNet (2009), the time was ripe for the world to take note of neural networks.

• AlexNet was a pivotal system that showed the promise of deep convolutional networks on ImageNet, the
benchmark created by the computer vision community who was at the time still skeptical of deep learning.
Many other success stories in speech recognition and machine translation followed.

Two intellectual traditions

• AI has always swung back and forth between the two

• Deep philosphical differences, but deeper connections (McCul-
loch/Pitts, AlphaGo)?

CS221 / Spring 2020 / Finn & Anari 35

• Reflecting back on the past of AI, there have been two intellectual traditions that have dominated the
scene: one rooted in logic and one rooted in neuroscience (at least initially). This debate is paralleled in
cognitive science with connectionism and computationalism.

• While there are deep philosophical differences, perhaps there are deeper connections.

• For example, McCulloch and Pitts’ work from 1943 can be viewed as the root of deep learning, but that
paper is mostly about how to implement logical operations.

• The game of Go (and indeed, many games) can be perfectly characterized by a set of simple logic rules.
At the same time, the most successful systems (AlphaGo) do not tackle the problem directly using logic,
but appeal to the fuzzier world of artificial neural networks.

A melting pot

• Bayes rule (Bayes, 1763) from probability

• Least squares regression (Gauss, 1795) from astronomy

• First-order logic (Frege, 1893) from logic

• Maximum likelihood (Fisher, 1922) from statistics

• Artificial neural networks (McCulloch/Pitts, 1943) from neuro-
science

• Minimax games (von Neumann, 1944) from economics

• Stochastic gradient descent (Robbins/Monro, 1951) from opti-
mization

• Uniform cost search (Dijkstra, 1956) from algorithms

• Value iteration (Bellman, 1957) from control theory

CS221 / Spring 2020 / Finn & Anari 37

• Of course, any story is incomplete.

• In fact, for much of the 1990s and 2000s, neural networks were not popular in the machine learning
community, and the field was dominated more by techniques such as Support Vector Machines (SVMs)
inspired by statistical theory.

• The fuller picture is that the modern world of AI is more like New York City—it is a melting pot that has
drawn from many different fields ranging from statistics, algorithms, economics, etc.

• And often it is the new connections between these fields that are made and their application to important
real-world problems that makes working on AI so rewarding.

Roadmap

A brief history

Two views

Course overview

Course logistics

Optimization

CS221 / Spring 2020 / Finn & Anari 39

Two views of AI

AI agents: how can we create intelligence?

AI tools: how can we benefit society?

CS221 / Spring 2020 / Finn & Anari 40

• There are two ways to look at AI philosophically.

• The first is the science and engineering of building ”intelligent” agents. The inspiration of what constitutes
intelligence comes from the types of capabilities that humans possess: the ability to perceive a very complex
world and make enough sense of it to be able to manipulate it.

• The second views AI as a set of tools. We are simply trying to solve problems in the world, and techniques
developed by the AI community happen to be useful for that, but these problems are not ones that humans
necessarily do well on natively.

• However, both views boil down to many of the same day-to-day activities (e.g., collecting data and
optimizing a training objective), the philosophical differences do change the way AI researchers approach
and talk about their work. Moreover, the conflation of these two views can generate a lot of confusion.

AI agents...

CS221 / Spring 2020 / Finn & Anari 42

An intelligent agent

Perception Robotics Language

Knowledge Reasoning Learning

CS221 / Spring 2020 / Finn & Anari 43

• The starting point for the agent-based view is ourselves.

• As humans, we have to be able to perceive the world (computer vision), perform actions in it (robotics),
and communicate with other agents (language).

• We also have knowledge about the world (from procedural knowledge like how to ride a bike, to declarative
knowledge like remembering the capital of France), and using this knowledge we can draw inferences and
make decisions (reasoning).

• Finally, we learn and adapt over time. We are born with none of the skills that we possess as adults, but
rather the capacity to acquire them. Indeed machine learning has become the primary driver of many of
the AI applications we see today.

Are we there yet?

Machines: narrow tasks, millions of examples

Humans: diverse tasks, very few examples

CS221 / Spring 2020 / Finn & Anari 45

• The AI agents view is an inspiring quest to undercover the mysteries of intelligence and tackle the tasks
that humans are good at. While there has been a lot of progress, we still have a long way to go along
some dimensions: for example, the ability to learn quickly from few examples or the ability to perform
commonsense reasoning.

• There is still a huge gap between the regimes that humans and machines operate in. For example, AlphaGo
learned from 19.6 million games, but can only do one thing: play Go. Humans on the other hand learn
from a much wider set of experiences, and can do many things.

AI tools...

CS221 / Spring 2020 / Finn & Anari 47

• The other view of AI is less about re-creating the capabilities that humans have, and more about how to
benefit humans.

• Even the current level of technology is already being deployed widely in practice, and many of these settings
are often not particularly human-like (targeted advertising, news or product recommendation, web search,
supply chain management, etc.)

Predicting poverty
[Jean et al. 2016]

CS221 / Spring 2020 / Finn & Anari 49

• Computer vision techniques, used to recognize objects, can also be used to tackle social problems. Poverty
is a huge problem, and even identifying the areas of need is difficult due to the difficulty in getting reliable
survey data. Recent work has shown that one can take satellite images (which are readily available) and
predict various poverty indicators.

Saving energy by cooling datacenters
[DeepMind]

CS221 / Spring 2020 / Finn & Anari 51

• Machine learning can also be used to optimize the energy efficiency of datacenters which, given the
hunger for compute these days, makes a big difference. Some recent work from DeepMind shows how
to significantly reduce Google’s energy footprint by using machine learning to predict the power usage
effectiveness from sensor measurements such as pump speeds, and use that to drive recommendations.

CS221 / Spring 2020 / Finn & Anari 53

Security

[Evtimov+ 2017]

[Sharif+ 2016]

CS221 / Spring 2020 / Finn & Anari 54

• Other applications such as self-driving cars and authentication have high-stakes, where errors could be
much more damaging than getting the wrong movie recommendation. These applications present a set of
security concerns.

• One can generate so-called adversarial examples, where by putting stickers on a stop sign, one can trick
a computer vision system into mis-classifying it as a speed limit sign. You can also purchase special glasses
that fool a system into thinking that you’re a celebrity.

Bias in machine translation

society ⇒ data ⇒ predictions

CS221 / Spring 2020 / Finn & Anari 56

Fairness in criminal risk assessment

• Northpointe: COMPAS predicts criminal risk score (1-10)

• ProPublica: given that an individual did not reoffend, blacks 2x
likely to be (wrongly) classified 5 or above

• Northpointe: given a risk score of 7, 60% of whites reoffended,
60% of blacks reoffended

CS221 / Spring 2020 / Finn & Anari 57

• A more subtle case is the issue of bias. One might naively think that since machine learning algorithms
are based on mathematical principles, they are somehow objective. However, machine learning predictions
come from the training data, and the training data comes from society, so any biases in society are reflected
in the data and propagated to predictions. The issue of bias is a real concern when machine learning is
used to decide whether an individual should receive a loan or get a job.

• Unfortunately, the problem of fairness and bias is as much of a philosophical one as it is a technical one.
There is no obvious ”right thing to do”, and it has even been shown mathematically that it is impossible
for a classifier to satisfy three reasonable fairness criteria (Kleinberg et al., 2016).

Summary so far

• AI agents: achieving human-level intelligence, still very far (e.g.,
generalize from few examples)

• AI tools: need to think carefully about real-world consequences
(e.g., security, biases)

CS221 / Spring 2020 / Finn & Anari 59

Roadmap

A brief history

Two views

Course overview

Course logistics

Optimization

CS221 / Spring 2020 / Finn & Anari 60

How do we solve AI tasks?

CS221 / Spring 2020 / Finn & Anari 61

• How should we actually solve AI tasks? The real world is complicated. At the end of the day, we need to
write some code (and possibly build some hardware, too). But there is a huge chasm.

Paradigm

Modeling

Inference Learning

CS221 / Spring 2020 / Finn & Anari 63

• In this class, we will adopt the modeling-inference-learning paradigm to help us navigate the solution
space. In reality the lines are blurry, but this paradigm serves as an ideal and a useful guiding principle.

Paradigm: modeling

Real world

Modeling

Model 8
0

8
5

7

4

5

6

8

2

6

3

1

7

8

6
2

3

4

6
13

7

5

1

CS221 / Spring 2020 / Finn & Anari 65

• The first pillar is modeling. Modeling takes messy real world problems and packages them into neat formal
mathematical objects called models, which can be subject to rigorous analysis and can be operated on
by computers. However, modeling is lossy: not all of the richness of the real world can be captured, and
therefore there is an art of modeling: what does one keep versus ignore? (An exception to this are games
such as Chess, Go or Sodoku, where the real world is identical to the model.)

• As an example, suppose we’re trying to have an AI that can navigate through a busy city. We might
formulate this as a graph where nodes represent points in the city, edges represent the roads, and the cost
of an edge represents the traffic on that road.

Paradigm: inference

Model 8
0

8
5

7

4

5

6

8

2

6

3

1

7

8

6
2

3

4

6
13

7

5

1

Inference

Predictions 8
0

8 5

7

4

5

6

8

2

6

3

1

7

8

6
2

3

4

6
13

7

5

1

CS221 / Spring 2020 / Finn & Anari 67

• The second pillar is inference. Given a model, the task of inference is to answer questions with respect to
the model. For example, given the model of the city, one could ask questions such as: what is the shortest
path? what is the cheapest path?

• The focus of inference is usually on efficient algorithms that can answer these questions. For some models,
computational complexity can be a concern (games such as Go), and usually approximations are needed.

Paradigm: learning

Model without parameters ?
?

?
?

?

?

?

?

?

?

?

?

?

?

?

?
?

?

?

?
??

?

?

?

+data

Learning

Model with parameters 8
0

8
5

7

4

5

6

8

2

6

3

1

7

8

6
2

3

4

6
13

7

5

1

CS221 / Spring 2020 / Finn & Anari 69

• But where does the model come from? Remember that the real world is rich, so if the model is to be
faithful, the model has to be rich as well. But we can’t possibly write down such a rich model manually.

• The idea behind (machine) learning is to instead get it from data. Instead of constructing a model, one
constructs a skeleton of a model (more precisely, a model family), which is a model without parameters.
And then if we have the right type of data, we can run a machine learning algorithm to tune the parameters
of the model.

• Note that learning here is not tied to a particular approach (e.g., neural networks), but more of a philosophy.
This general paradigm will allow us to bridge the gap between logic-based AI and statistical AI.

Course plan

”Low-level intelligence” ”High-level intelligence”

Machine learning

CS221 / Spring 2020 / Finn & Anari [learning] 71

• We now embark on our tour of the topics in this course. The topics correspond to types of models that
we can use to represent real-world tasks. The topics will in a sense advance from low-level intelligence to
high-level intelligence, evolving from models that simply make a reflex decision to models that are based
on logical reasoning.

Machine learning

Data Model

• The main driver of recent successes in AI

• Move from ”code” to ”data” to manage the information complex-
ity

• Requires a leap of faith: generalization

CS221 / Spring 2020 / Finn & Anari 73

• Supporting all of these models is machine learning, which has been arguably the most crucial ingredient
powering recent successes in AI. From a systems engineering perspective, machine learning allows us to
shift the information complexity of the model from code to data, which is much easier to obtain (either
naturally occurring or via crowdsourcing).

• The main conceptually magical part of learning is that if done properly, the trained model will be able to
produce good predictions beyond the set of training examples. This leap of faith is called generalization,
and is, explicitly or implicitly, at the heart of any machine learning algorithm. This can even be formalized
using tools from probability and statistical learning theory.

Course plan

Reflex

”Low-level intelligence” ”High-level intelligence”

Machine learning

CS221 / Spring 2020 / Finn & Anari 75

What is this animal?

CS221 / Spring 2020 / Finn & Anari 76

Reflex-based models

• Examples: linear classifiers, deep neural networks

• Most common models in machine learning

• Fully feed-forward (no backtracking)

CS221 / Spring 2020 / Finn & Anari [reflex] 77

• A reflex-based model simply performs a fixed sequence of computations on a given input. Examples include
most models found in machine learning, from simple linear classifiers to deep neural networks. The main
characteristic of reflex-based models is that their computations are feed-forward; one doesn’t backtrack
and consider alternative computations. Inference is trivial in these models because it is just running the
fixed computations, which makes these models appealing.

Course plan

Reflex

Search problems

Markov decision processes

Adversarial games

States

”Low-level intelligence” ”High-level intelligence”

Machine learning

CS221 / Spring 2020 / Finn & Anari [state-based models] 79

State-based models

White to move

CS221 / Spring 2020 / Finn & Anari 80

State-based models

Applications:

• Games: Chess, Go, Pac-Man, Starcraft, etc.

• Robotics: motion planning

• Natural language generation: machine translation, image caption-
ing

CS221 / Spring 2020 / Finn & Anari 81

• Reflex-based models are too simple for tasks that require more forethought (e.g., in playing chess or
planning a big trip). State-based models overcome this limitation.

• The key idea is, at a high-level, to model the state of a world and transitions between states which are
triggered by actions. Concretely, one can think of states as nodes in a graph and transitions as edges. This
reduction is useful because we understand graphs well and have a lot of efficient algorithms for operating
on graphs.

State-based models

Search problems: you control everything

Markov decision processes: against nature (e.g., Blackjack)

Adversarial games: against opponent (e.g., chess)

CS221 / Spring 2020 / Finn & Anari 83

• Search problems are adequate models when you are operating in an environment that has no uncertainty.
However, in many realistic settings, there are other forces at play.

• Markov decision processes handle tasks with an element of chance (e.g., Blackjack), where the distri-
bution of randomness is known (reinforcement learning can be employed if it is not).

• Adversarial games, as the name suggests, handle tasks where there is an opponent who is working against
you (e.g., chess).

Pac-Man

[demo]

CS221 / Spring 2020 / Finn & Anari 85

Course plan

Reflex

Search problems

Markov decision processes

Adversarial games

States

Constraint satisfaction problems

Bayesian networks

Variables

”Low-level intelligence” ”High-level intelligence”

Machine learning

CS221 / Spring 2020 / Finn & Anari 86

Sudoku

Goal: put digits in blank squares so each row, column, and 3x3 sub-block
has digits 1–9

Note: order of filling squares doesn’t matter in the evaluation criteria!

CS221 / Spring 2020 / Finn & Anari 87

• In state-based models, solutions are procedural: they specify step by step instructions on how to go from
A to B. In many applications, the order in which things are done isn’t important.

Variable-based models

Constraint satisfaction problems: hard constraints (e.g., Sudoku,
scheduling)

X1 X2

X3 X4

Bayesian networks: soft dependencies (e.g., tracking cars from sensors)

H1 H2 H3 H4 H5

E1 E2 E3 E4 E5

CS221 / Spring 2020 / Finn & Anari 89

• Constraint satisfaction problems are variable-based models where we only have hard constraints. For
example, in scheduling, we can’t have two people in the same place at the same time.

• Bayesian networks are variable-based models where variables are random variables which are dependent
on each other. For example, the true location of an airplane Ht and its radar reading Et are related, as
are the location Ht and the location at the last time step Ht−1. The exact dependency structure is given
by the graph structure and it formally defines a joint probability distribution over all of the variables. This
topic is studied thoroughly in probabilistic graphical models (CS228).

Course plan

Reflex

Search problems

Markov decision processes

Adversarial games

States

Constraint satisfaction problems

Bayesian networks

Variables Logic

”Low-level intelligence” ”High-level intelligence”

Machine learning

CS221 / Spring 2020 / Finn & Anari 91

Motivation: virtual assistant

Tell information Ask questions

Use natural language!

[demo]

Need to:

• Digest heterogenous information

• Reason deeply with that information

CS221 / Spring 2020 / Finn & Anari 92

• Our last stop on the tour is logic. Even more so than variable-based models, logic provides a compact
language for modeling which gives us more expressivity.

• It is interesting that historically, logic was one of the first things that AI researchers started with in the
1950s. While logical approaches were in a way quite sophisticated, they did not work well on complex
real-world tasks with noise and uncertainty. On the other hand, methods based on probability and machine
learning naturally handle noise and uncertainty, which is why they presently dominate the AI landscape.
However, they are yet to be applied successfully to tasks that require really sophisticated reasoning.

• In this course, we will appreciate the two as not contradictory, but simply tackling different aspects of
AI — in fact, in our course plan, logic is a class of models which can be supported by machine learning.
An active area of research is to combine the richness of logic with the robustness and agility of machine
learning.

• One motivation for logic is a virtual assistant. At an abstract level, one fundamental thing a good personal
assistant should be able to do is to take in information from people and be able to answer questions that
require drawing inferences from these facts.

• In some sense, telling the system information is like machine learning, but it feels like a very different form
of learning than seeing 10M images and their labels or 10M sentences and their translations. The type of
information we get here is both more heterogenous, more abstract, and the expectation is that we process
it more deeply (we don’t want to tell our personal assistant 100 times that we prefer morning meetings).

• And how do we interact with our personal assistants? Let’s use natural language, the very tool that was
built for communication!

Course plan

Reflex

Search problems

Markov decision processes

Adversarial games

States

Constraint satisfaction problems

Bayesian networks

Variables Logic

”Low-level intelligence” ”High-level intelligence”

Machine learning

CS221 / Spring 2020 / Finn & Anari 95

Roadmap

A brief history

Two views

Course overview

Course logistics

Optimization

CS221 / Spring 2020 / Finn & Anari 96

Course objectives

Before you take the class, you should know...

• Programming (CS 106A, CS 106B, CS 107)

• Discrete math, mathematical rigor (CS 103)

• Probability (CS 109)

• Algorithms (CS 161)

At the end of this course, you should...

• Be able to tackle real-world tasks with the appropriate tech-
niques

• Be more proficient at math and programming

CS221 / Spring 2020 / Finn & Anari 97

Coursework

• Homeworks (40%)

• Midterm Exam (30%)

• Optional Project (30%)

• If you opt out of project: homework (60%), midterm (40%)

CS221 / Spring 2020 / Finn & Anari 98

Grading

• Satisfactory / No Credit

CS221 / Spring 2020 / Finn & Anari 99

Homeworks

• 7 homeworks, mix of written and programming problems, each
centers on an application

Introduction foundations

Machine learning sentiment classification

Search text reconstruction

MDPs blackjack

Games Pac-Man

CSPs course scheduling

Bayesian networks car tracking

• Pac-Man competition for extra credit

• When you submit, programming parts will be run on all test cases,
but only get feedback on a subset

• Check the outputs of your submitted code!

CS221 / Spring 2020 / Finn & Anari 100

Midterm Exam

• Goal: test your ability to use knowledge to solve new problems,
not know facts

• All written problems (look at past exam problems for style)

• Covers all material up to and including May 20th (week 7)

• Time-limited, open-universe (but no collaboration or plagiarism)

• Tuesday, June 2nd (3 hours, within 24 hr window)

CS221 / Spring 2020 / Finn & Anari 101

Optional Project

• Goal: choose any task you care about and apply techniques from
class

• Work in groups of up to 4; find a group early (your responsibility),
grading agnostic to group size!

• Milestones: proposal, progress report, poster, final report

• Task is completely open, but must follow well-defined steps: task
definition, implement baselines/oracles, evaluate on dataset, liter-
ature review, error analysis (read website)

• Help: assigned a CA mentor, come to any office hours

CS221 / Spring 2020 / Finn & Anari 102

Policies

Gradescope: submit all assignments there

Late days: 7 total late days, max two per assignment (not for final project
report, poster)

Piazza: ask questions on Piazza, do not email us directly except for OAE
letters

Piazza: extra credit for students who help answer questions

All details are on the course website

CS221 / Spring 2020 / Finn & Anari 103

• Do collaborate and discuss together, but write up and code inde-
pendently.

• Do not look at anyone else’s writeup or code.

• Do not show anyone else your writeup or code or post it online
(e.g., GitHub).

• When debugging, only look at input-output behavior.

• We will run MOSS periodically to detect plagarism.

CS221 / Spring 2020 / Finn & Anari 104

Roadmap

A brief history

Two views

Course overview

Course logistics

Optimization

CS221 / Spring 2020 / Finn & Anari 105

Optimization

Discrete optimization: find the best discrete object

min
p∈Paths

Cost(p)

Algorithmic tool: dynamic programming

Continuous optimization: find the best vector of real numbers

min
w∈Rd

TrainingError(w)

Algorithmic tool: gradient descent

CS221 / Spring 2020 / Finn & Anari 106

• We are now done with the high-level motivation for the class. Let us now dive into some technical details.
Let us focus on the inference and the learning aspect of the modeling-inference-learning paradigm.

• We will approach inference and learning from an optimization perspective, which allows us to decouple
the mathematical specification of what we want to compute from the algorithms for how to compute it.

• In total generality, optimization problems ask that you find the x that lives in a constraint set C that
makes the function F (x) as small as possible.

• There are two types of optimization problems we’ll consider: discrete optimization problems (mostly for
inference) and continuous optimization problems (mostly for learning). Both are backed by a rich research
field and are interesting topics in their own right. For this course, we will use the most basic tools from
these topics: dynamic programming and gradient descent.

• Let us do two practice problems to illustrate each tool. For now, we are assuming that the model (opti-
mization problem) is given and only focus on algorithms.

Problem: computing edit distance

Input: two strings, s and t

Output: minimum number of character insertions, deletions, and
substitutions it takes to change s into t

Examples:

”cat”, ”cat” ⇒ 0

”cat”, ”dog” ⇒ 3

”cat”, ”at” ⇒ 1

”cat”, ”cats” ⇒ 1

”a cat!”, ”the cats!” ⇒ 4

[semi-live solution]

CS221 / Spring 2020 / Finn & Anari [dynamic programming] 108

• Let’s consider the formal task of computing the edit distance (or more precisely the Levenshtein dis-
tance) between two strings. These measures of dissimilarity have applications in spelling correction and
computational biology (applied to DNA sequences).
• As a first step, you should think of breaking down the problem into subproblems. Observation 1: inserting

into s is equivalent to deleting a letter from t (ensures subproblems get smaller). Observation 2: perform
edits at the end of strings (might as well start there).
• Consider the last letter of s and t. If these are the same, then we don’t need to edit these letters, and

we can proceed to the second-to-last letters. If they are different, then we have three choices. (i) We can
substitute the last letter of s with the last letter of t. (ii) We can delete the last letter of s. (iii) We can
insert the last letter of t at the end of s.
• In each of those cases, we can reduce the problem into a smaller problem, but which one? We simply try

all of them and take the one that yields the minimum cost!
• We can express this more formally with a mathematical recurrence. These types of recurrences will show

up throughout the course, so it’s a good idea to be comfortable with them. Before writing down the
actual recurrence, the first step is to express the quantity that we wish to compute. In this case: let
d(m,n) be the edit distance between the first m letters of s and the first n letters of t. Then we have

d(m,n) =


m if n = 0

n if m = 0

d(m− 1, n− 1) if s m = t n

1 + min{d(m− 1, n− 1), d(m− 1, n), d(m,n− 1)} otherwise.

• Once you have the recurrence, you can code it up. The straightforward implementation will take exponential
time, but you can memoize the results to make it quadratic time (in this case, O(nm)). The end result
is the dynamic programming solution: recurrence + memoization.

Problem: finding the least squares line

Input: set of pairs {(x1, y1), . . . , (xn, yn)}
Output: w ∈ R that minimizes the squared error

F (w) =
∑n

i=1(xiw − yi)
2

Examples:

{(2, 4)} ⇒ 2

{(2, 4), (4, 2)} ⇒ ?

[semi-live solution]

CS221 / Spring 2020 / Finn & Anari [linear regression,gradient descent] 110

• The formal task is this: given a set of n two-dimensional points (xi, yi) which defines F (w), compute the
w that minimizes F (w).

• Linear regression is an important problem in machine learning, which we will come to later. Here’s a
motivation for the problem: suppose you’re trying to understand how your exam score (y) depends on the
number of hours you study (x). Let’s posit a linear relationship y = wx (not exactly true in practice, but
maybe good enough). Now we get a set of training examples, each of which is a (xi, yi) pair. The goal is
to find the slope w that best fits the data.
• Back to algorithms for this formal task. We would like an algorithm for optimizing general types of F (w).

So let’s abstract away from the details. Start at a guess of w (say w = 0), and then iteratively update
w based on the derivative (gradient if w is a vector) of F (w). The algorithm we will use is called gradient
descent.
• If the derivative F ′(w) < 0, then increase w; if F ′(w) > 0, decrease w; otherwise, keep w still. This

motivates the following update rule, which we perform over and over again: w ← w − ηF ′(w), where
η > 0 is a step size that controls how aggressively we change w.

• If η is too big, then w might bounce around and not converge. If η is too small, then w might not move
very far to the optimum. Choosing the right value of η can be rather tricky. Theory can give rough
guidance, but this is outside the scope of this class. Empirically, we will just try a few values and see which
one works best. This will help us develop some intuition in the process.
• Now to specialize to our function, we just need to compute the derivative, which is an elementary calculus

exercise: F ′(w) =
∑n

i=1 2(xiw − yi)xi.

Summary

• History: roots from logic, neuroscience, statistics—melting pot!

• Modeling [reflex, states, variables, logic] + inference + learning
paradigm

• AI has high societal impact, how to steer it positively?

CS221 / Spring 2020 / Finn & Anari 112

