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• In this lecture, we will cover non-linear predictors. We will start with non-linear features, which are ways to use linear models to create
nonlinear predictors.

• We will then follow this up with feature templates, which are flexible ways of defining features

• Then, we will cover the basics of neural networks, defining neural networks as a model and discussing how to compute gradients for these
models using backpropagation.

• As a reminder, feel free to raise your hand or post in the Ed thread when you have a question, and we will discuss the questions throughout
the lecture. If you would like to ask a question anonymously, feel free to send a private message to Mike. We have about 55 minutes of
material today, which leaves us with about 25 minutes for questions throughout!

• Lets get started with nonlinear features.



Linear regression
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Hypothesis class

F = {fw(x) = w · φ(x) : w ∈ Rd}

φ(x) = [1, x]

f(x) = [1, 0.57] · φ(x)

f(x) = [2, 0.2] · φ(x)
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• We will look at regression and later turn to classification.

• Last week we defined linear regression as a procedure which takes training data and produces a predictor that maps new inputs to new outputs.

• We discussed three parts to this problem, and the first one was the hypothesis class. This is the set of possible predictors for the learning
problem

• For linear predictors, the hypothesis class is the set of predictors that map some input x to the dot product between some weight vector w
and the feature vector φ(x).

• As a simple example, if we define the feature extractor to be φ(x) = [1, x], then we can define various linear predictors with different intercepts
and slopes.



More complex data
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• But sometimes data might be more complex and not be easily fit by a linear predictor. In this case, what can we do?

• One immediate reaction might be to go to something fancier like neural networks or decision trees or non-parametrics.

• But let’s see how far we can get with the machinery of linear predictors first, and you might be surprised with how far we can go.



Quadratic predictors

φ(x) = [1, x, x2]

Example: φ(3) = [1, 3, 9]

f(x) = [2, 1,−0.2] · φ(x)

f(x) = [4,−1, 0.1] · φ(x)

f(x) = [1, 1, 0] · φ(x)

F = {fw(x) = w · φ(x) : w ∈ R3}
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• A linear model takes some input and makes a prediction that is linear in its inputs, by taking a dot product. But there is no rule saying that
we cannot non-linearly transform the input data first, which is where the function φ comes in.

• This is going to be the key starting observation – the feature extractor φ can be arbitrary

• As an example, if we wanted to fit a quadratic function, we can augment our features φ with a x2 term.

• Now, by setting the weights appropriately, we can define a non-linear (specifically, a quadratic) predictor.

• Note that by setting the weight for feature x2 to zero, such as with the 1,1,0 feature vector, we recover linear predictors.

• Again, the hypothesis class is the set of all predictors fw obtained by varying w.

• Note that the hypothesis class of quadratic predictors is a superset of the hypothesis class of linear predictors. So our model is strictly more
expressive, though potentially at the cost of more samples.

• In summary, we’ve now seen our first example of obtaining non-linear predictors just by changing the feature extractor φ!

• As an additional note, I would encourage you to try thinking about how to use this idea to learn two- or even three- dimensional quadratics.
What new challenges arise? It is going to turn out you will need not just squared terms for each dimension but also all of the cross terms.



Piecewise constant predictors

φ(x) = [1[0 < x ≤ 1],1[1 < x ≤ 2],1[2 < x ≤ 3],1[3 < x ≤ 4],1[4 < x ≤ 5]]

Example: φ(2.3) = [0, 0, 1, 0, 0]

f(x) = [1, 2, 4, 4, 3] · φ(x)

f(x) = [4, 3, 3, 2, 1.5] · φ(x)

F = {fw(x) = w · φ(x) : w ∈ R5}
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• Quadratic predictors are nice but still a bit restricted: they can only go up and then down smoothly (or vice-vera).

• We can introduce another type of feature extractor that divides the input space into regions and allows the predicted value of each region to
vary independently, This allows you to represent piecewise constant predictors (see figure).

• Specifically, each component of the feature vector corresponds to one region (e.g., [0, 1)) and is 1 if x lies in that region and 0 otherwise.

• Assuming the regions are disjoint, the weight associated with a component/region is exactly the predicted value.

• As you make the regions smaller, then you have more features, and the expressivity of your hypothesis class increases, allowing you to model
richer and richer functions. In the limit, you can essentially capture any predictor you want.

• This seems quite nice, but what is the catch? The drawback of these kinds of features is that you need alot of training data to learn these
predictors. You need a sample within each interval to know its value, and there is no sharing of information across these intervals. Doing this
trick in d-dimensions rather than 1-dimension, your data requirements will go up exponentially in the dimension d!



Predictors with periodicity structure

φ(x) = [1, x, x2, cos(3x)]

Example: φ(2) = [1, 2, 4, 0.96]

f(x) = [1, 1,−0.1, 1] · φ(x)

f(x) = [3,−1, 0.1, 0.5] · φ(x)

F = {fw(x) = w · φ(x) : w ∈ R4}
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• Quadratic and piecewise constant predictors are just two examples of an unboundedly large design space of possible feature extractors.

• Generally, the choice of features is informed by the prediction task that we wish to solve (either prior knowledge or preliminary data exploration).

• For example, if x represents time and we believe the true output y varies according to some periodic structure (e.g., traffic patterns repeat
daily, sales patterns repeat annually), then we might use periodic features such as cosine or sine to capture these trends.

• In this case, we can simply append the cosine of 3x to feature vector to represent such periodic functions at a particular frequency.

• Each feature might represent some type of structure in the data. If we have multiple types of structures, these can just be ”thrown in” into
the feature vector and let the learning algorithm decide what to use.

• Features represent what properties might be useful for prediction. If a feature is not useful, then the learning algorithm can (and hopefully
will) assign a weight close to zero to that feature. Of course, the more features one has, the harder learning becomes, and the more samples
you will need.



Linear in what?

Prediction:

fw(x) = w · φ(x)

Linear in w? Yes

Linear in φ(x)? Yes

Linear in x? No!

Key idea: non-linearity

• Expressivity: score w · φ(x) can be a non-linear function of x

• Efficiency: score w · φ(x) always a linear function of w
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• Stepping back, how are we able to obtain non-linear predictors if we’re still using the machinery of linear predictors? This is perhaps a bit
surprising! You can think of this like pre-processing: the feature map φ is a way of transforming the inputs so that the function looks linear
in this new space.

• Importantly, the score w · φ(x) is linear in the weights w and features φ(x). However, the score is not linear in x (it might not even make
sense because x need not be a vector of numbers at all. In NLP, x is often a piece of text).

• Adding more features will generally make the prediction problem more linear, but this comes at the cost of learning and sample complexity.
We have to learn more weights, one weight for each feature, which will require larger datasets

• The machinery of non-linear features combines the benefits of linear models, like simplicity and ease of optimization, with the benefits of
more expressive models that capture nonlinear relations.



Linear classification

φ(x) = [x1, x2]

f(x) = sign([−0.6, 0.6] · φ(x))

-3 -2 -1 0 1 2 3

x1

-3

-2

-1

0

1

2

3

x
2

Decision boundary is a line

CS221 16



• Now let’s turn from regression to classification.

• The story is pretty much the same: you can define arbitrary features to yield non-linear classifiers.

• Recall that in binary classification, the classifier (predictor) returns the sign of the score.

• The score is linear in the weights and the features, but the predictor is already not linear because of the sign operation. So, what do we mean
by a classifier being non-linear or linear?

• Since it’s not helpful to talk about the linearity of f , we instead ask – can we make the classifier’s decision boundary non-linear?

• Last week, we only saw examples of classifiers with decision boundaries that are a straight line. Our goal now is to find classifiers that separate
the space of positives and negatives not by a line, but with a more complex boundary.



Quadratic classifiers

φ(x) = [x1, x2, x
2
1 + x22]

f(x) = sign([2, 2,−1] · φ(x))

Equivalently:

f(x) =

{
1 if {(x 1− 1)2 + (x 2− 1)2 ≤ 2}
−1 otherwise
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• Let us see how we can define a classifier with a non-linear decision boundary but still using the machinery of linear classifiers.

• Let’s try to construct a feature extractor that induces a decision boundary that is a circle: where everything inside is classified as +1 and
everything outside is classified as -1.

• As we saw before, we can add new features to get non-linear functions. In this case, we will add a new feature x2
1+x2

2 into the feature vector,
and claim that a linear classifier with these features will give us a predictor with a circular decision boundary.

• If you group these terms, then you can rewrite the classifier to make it clear that it is the equation for the interior of a circle with radius
√
2.

• As a sanity check, we you can see that x = [0, 0] results in a score of 0, which means that it is on the decision boundary. And as either of x1

or x2 grow in magnitude (either |x1| → ∞ or |x2| → ∞), the contribution of the third feature dominates and the sign of the score will be
negative.

• To recap, all we needed to do to get this decision boundary was to add these quadratic features into our linear classifier.



Visualization in feature space

Input space: x = [x1, x2], decision boundary is a circle

Feature space: φ(x) = [x1, x2, x
2
1 + x22], decision boundary is a hyperplane
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• Let’s try to understand the relationship between the non-linearity in x and linearity in φ(x).

• Click on the image to see the linked video (which is about polynomial kernels and SVMs, but the same principle applies here).

• In the input space x, the decision boundary which separates the red and blue points is a circle.

• We can also visualize the points in feature space, where each point is given an additional dimension x21 + x22.

• When we add a feature, we are essentially lifting the datapoints into a 3-dimensional space.

• In this three-dimensional feature space, a linear predictor (which is now defined by a hyperplane instead of a line) can in fact separate the red
and blue points.

• This corresponds to the non-linear predictor in the original two-dimensional space, despite being a linear function in the lifted three dimensional
space.



Summary

fw(x) = w · φ(x)
linear in w, φ(x)

non-linear in x

• Regression: non-linear predictor, classification: non-linear decision boundary

• Types of non-linear features: quadratic, piecewise constant, etc.

Non-linear predictors with linear machinery
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• To summarize, we have shown that the term ”linear” can be ambiguous: a predictor in regression can be non-linear in the input x but is so
far always linear with respect to the feature vector φ(x).

• The score is also linear with respect to the weights w, which is important for efficient learning.

• Classification is similar, except we talk about (non-)linearity of the decision boundary.

• We also saw many types of non-linear predictors that you could create by concocting various features (quadratic predictors, piecewise constant
predictors, periodic predictors).

• The takeaway is that linear models are surprisingly powerful! More sophisticated versions of this which are called kernel methods drove much
of the statistical machine learning gains in the early 2000s!



Roadmap

Topics in the lecture:

Nonlinear features

Feature templates

Neural networks

Backpropagation
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• Hopefully, you now have an idea of how to use linear models to learn non-linear predictors

• The main challenge though, is in defining these non-linear features.

• We will now cover feature templates, which is one way of defining flexible families of features



Feature extraction + learning

F = {fw(x) = sign(w · φ(x)) : w ∈ Rd}
All predictors

Feature extraction

F
Learning

fw

• Feature extraction: choose F based on domain knowledge

• Learning: choose fw ∈ F based on data

Want F to contain good predictors but not be too big
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• Recall that the hypothesis class F is the set of predictors considered by the learning algorithm. In the case of linear predictors, the hypothesis
class F contains some function of w · φ(x) for all w (sign for classification, no sign for regression). This can be visualized as a set, shown in
blue in this figure.

• Learning is the process of choosing a particular predictor fw from F given training data.

• But the question that we are currently concerned about is how do we choose F? We saw some options already: the set of linear predictors,
the set of quadratic predictors which is a strict superset, etc., but what makes sense for a given application?
• If the hypothesis class doesn’t contain any good predictors, then no amount of learning can help. So the question when extracting features is

really whether they are powerful enough to express good predictors. It’s okay and expected that F will contain bad predictors as well, since
the learning algorithm can avoid them. But we also don’t want F to be too big, or else learning becomes hard, not just computationally but
also statistically (which we’ll talk about more in the module on generalization).

• In essence, we want the smallest hypothesis class size that still contains good predictors.



Feature extraction with feature names

Example task:

string (x)
fw(x) = sign(w · φ(x))

classifier

valid email address? (y)

Question: what properties of x might be relevant for predicting y?

Feature extractor: Given x, produce set of (feature name, feature value) pairs

abc@gmail.com

x

length>10 : 1

fracOfAlpha : 0.85

contains @ : 1

endsWith com : 1

endsWith org : 0

φ(x)

feature extractor φ

arbitrary!
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• To get some intuition about feature extraction, let us consider the task of predicting whether whether a string is a valid email address or not.

• We will assume the classifier fw is a linear classifier, which is given by some feature extractor φ.

• Feature extraction is a bit of an art that requires intuition about both the task and also what machine learning algorithms are capable of.
The general principle is that features should represent properties of x which might be relevant for predicting y.

• Think about the feature extractor as producing a set of (feature name, feature value) pairs. For example, we might extract information about
the length, or fraction of alphanumeric characters, whether it contains various substrings, etc.

• It is okay to add features which turn out to be irrelevant, since the learning algorithm can always in principle choose to ignore the feature,
though it might take more data to do so.

• We have been associating each feature with a name so that it’s easier for us (as humans) to interpret and develop the feature extractor. The
feature names act like the analogue of comments in code. Mathematically, the feature name is not needed by the learning algorithm and
erasing them does not change prediction or learning, but it is helpful for interpreting them within our overall system.



Prediction with feature names

Weight vector w ∈ Rd Feature vector φ(x) ∈ Rd

length>10 :-1.2

fracOfAlpha :0.6

contains @ :3

endsWith com:2.2

endsWith org :1.4

length>10 :1

fracOfAlpha :0.85

contains @ :1

endsWith com:1

endsWith org :0

Score: weighted combination of features

w · φ(x) =
∑d

j=1 wjφ(x)j

Example: −1.2(1) + 0.6(0.85) + 3(1) + 2.2(1) + 1.4(0) = 4.51
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• A feature vector formally is just a list of numbers, but we have endowed each feature in the feature vector with a name.

• The weight vector is also just a list of numbers, but we can give each weight the corresponding name as well.

• Since the score is simply the dot product between the weight vector and the feature vector. each feature weight wj determines how the
corresponding feature value φj(x) contributions to the prediction, and these contributions are aggregated in the score.

• If wj is positive, then the presence of feature j (φj(x) = 1) favors a positive classification (e.g., ending with com). Conversely, if wj is
negative, then the presence of feature j favors a negative classification (e.g., length greater than 10). The magnitude of wj measures the
strength or importance of this contribution.

• Finally, keep in mind that these contributions are considered holistically. It might be tempting to think that a positive weight means that a
feature is always positively correlated with the output. That is not necessarily true - the weights in a model work together, and a feature
with positive weight can even have negative correlation with the outcome. You may have seen an example of this in a stats course - called
simpsons paradox - which you can look into if you find this intriguing.



Organization of features?

abc@gmail.com

x

length>10 : 1

fracOfAlpha : 0.85

contains @ : 1

endsWith com : 1

endsWith org : 0

φ(x)

feature extractor φ

arbitrary!

Which features to include? Need an organizational principle...
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• How would we go about about creating good features?

• Here, we used our prior knowledge to define certain features (like whether an input contains @) which we believe are helpful for detecting
email addresses.

• But this is ad-hoc, and it’s easy to miss useful features (e.g. country codes in the ends with), and there might be other features which are
predictive but not intuitive.

• So, we need a more systematic way to go about constructing these features to try to capture all the features we might want.



Feature templates

Definition: feature template

A feature template is a group of features all computed in a similar way.

abc@gmail.com last three characters equals

endsWith aaa : 0

endsWith aab : 0

endsWith aac : 0

...

endsWith com : 1

...

endsWith zzz : 0

Define types of pattern to look for, not particular patterns
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• A useful organization principle is a feature template, which groups all the features which are computed in a similar way. (People often use
the word ”feature” when they really actually mean ”feature template”.)

• Rather than defining individual features like endsWith com, we can define a single feature template that expands into all the features that
computes whether the input x matches any three characters.

• Typically, we will write a feature template as an English description with a blank ( ), which is to be filled in with an arbitrary value.

• The upshot is that we don’t need to know which particular patterns (e.g., three-character suffixes) are useful, but only that existence of
certain patterns (e.g., three-character suffixes) are useful cue to look at. As long as this set can capture useful templates like .com, then this
feature template will be useful

• It is then up to the learning algorithm to figure out which patterns are useful for predicting email addresses by assigning the appropriate
feature weights.



Feature templates example 1

Input:

abc@gmail.com

Feature template Example feature

Fraction of alphanumeric characters Fraction of alphanumeric characters : 0.85

Last three characters equals Last three characters equals com : 1

Length greater than Length greater than 10 : 1

CS221 36



• Here are some other examples of feature templates.

• Note that an isolated feature (e.g., fraction of alphanumeric characters) can be treated as a trivial feature template with no blanks to be
filled.

• In many cases, the feature value is binary (0 or 1) or within some discrete set (e.g. 1, ..., 10), but they can also be real numbers.



Feature templates example 2

Input:

Latitude: 37.4068176

Longitude: -122.1715122

Feature template Example feature name

Pixel intensity of image at row and column ( channel) Pixel intensity of image at row 10 and column 93 (red channel) : 0.8

Latitude is in [ , ] and longitude is in [ , ] Latitude is in [ 37.4, 37.5 ] and longitude is in [ -122.2, -122.1 ] : 1
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• As another example application, suppose the input is an aerial image along with the latitude/longitude corresponding to where the image was
taken. This type of input arises in poverty mapping and land cover classification.

• In this case, we might define one feature template corresponding to the pixel intensities at various pixel-wise row/column positions in the
image across all the 3 color channels (e.g., red, green, blue).

• Another feature template might define a family of binary features, one for each region of the world, where each region is defined by a box
over latitude and longitude. This is very similar to the piecewise constant predictors that we discussed earlier in the lecture, where we have
indicators for points that lie in a particular region.



Sparsity in feature vectors

abc@gmail.com last character equals

endsWith a : 0

endsWith b : 0

endsWith c : 0

endsWith d : 0

endsWith e : 0

endsWith f : 0

endsWith g : 0

endsWith h : 0

endsWith i : 0

endsWith j : 0

endsWith k : 0

endsWith l : 0

endsWith m : 1

endsWith n : 0

endsWith o : 0

endsWith p : 0

endsWith q : 0

endsWith r : 0

endsWith s : 0

endsWith t : 0

endsWith u : 0

endsWith v : 0

endsWith w : 0

endsWith x : 0

endsWith y : 0

endsWith z : 0

Compact representation:

{"endsWith m": 1}CS221 40



• In general, a feature template corresponds to many features, and sometimes, for a given input, most of the feature values are zero; that is,
the feature vector is sparse.

• For example, in the email address prediction problem, we see that the vast number of endswith features are zeros for this address. In fact,
only one of them can be one for this feature template.

• Of course, different feature vectors will have different non-zero features.

• But, in these cases, it is very inefficient to represent all the features explicitly, especially when you are using many different sparse feature
templates. Instead, we can store only the values of the non-zero features, assuming all other feature values are zero by default. This compact
representation is shown at the bottom.



Two feature vector implementations

Arrays (good for dense features): Dictionaries (good for sparse features):

pixelIntensity(0,0) : 0.8

pixelIntensity(0,1) : 0.6

pixelIntensity(0,2) : 0.5

pixelIntensity(1,0) : 0.5

pixelIntensity(1,1) : 0.8

pixelIntensity(1,2) : 0.7

pixelIntensity(2,0) : 0.2

pixelIntensity(2,1) : 0

pixelIntensity(2,2) : 0.1

fracOfAlpha : 0.85

contains a : 0

contains b : 0

contains c : 0

contains d : 0

contains e : 0

...

contains @ : 1

...

[0.8, 0.6, 0.5, 0.5, 0.8, 0.7, 0.2, 0, 0.1] {"fracOfAlpha": 0.85, "contains @": 1}
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• In general, there are two common ways to implement feature vectors: using arrays (which are good for dense features) and using dictionaries
(which are good for sparse features).
• Arrays assume a fixed ordering of the features and store the feature values as an array. This implementation is appropriate when the number

of nonzeros is significant (the features are dense). Pixel intensity is a good example, since there is a wide range of intensities and most
locations have a non-zero pixel intensity.
• However, when we have sparsity, it is typically much more efficient to implement the feature vector as a dictionary (or a map) from strings

to doubles rather than a fixed-size array of doubles. The features not in the dictionary implicitly have a default value of zero. This sparse
implementation is useful for areas like natural language processing with linear predictors, and is what allows us to work efficiently over millions
of features and words because most of them never appear in an individual example. Dictionaries do incur extra overhead compared to arrays,
and therefore dictionaries are much slower when the features are not sparse.
• One advantage of the sparse feature implementation is that you don’t have to instantiate all the set of possible features in advance; the weight

vector can be initialized to empty {}, and only when a feature weight becomes non-zero do we store it. This means we can dynamically
update a model with incrementally arriving data, which might instantiate new features.



Summary

F = {fw(x) = sign(w · φ(x)) : w ∈ Rd}

Feature template:

abc@gmail.com last three characters equals

endsWith aaa : 0

endsWith aab : 0

endsWith aac : 0

...

endsWith com : 1

...

endsWith zzz : 0

Dictionary implementation:

{"endsWith com": 1}
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• The question we are concerned with in this section is how to define the hypothesis class F , which in the case of linear predictors is the
question of what the feature extractor φ is.

• We saw earlier that the feature extractor can dramatically change the kinds of functions that we can reprensent.

• We showed how feature templates can be useful for organizing the definition of many features, and that we can use dictionaries to represent
sparse feature vectors efficiently.
• Stepping back, feature engineering is one of the most critical components in the practice of machine learning. It often does not get as much

attention as it deserves, mostly because it is a bit of an art and usually quite domain-specific.
• More powerful predictors such as neural networks will alleviate a lot of the burden of feature engineering (which is one of the reasons it is

so popular), but even neural networks use feature vectors as the initial starting point, and therefore their effectiveness is still affected by the
feature representation.
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• Now let’s dive into neural networks, first by understanding them as a model and hypothesis class.



Non-linear predictors

Linear predictors:

fw(x) = w · φ(x), φ(x) = [1, x]
0 1 2 3 4 5

x

0

1

2

3

4

y

Non-linear (quadratic) predictors:

fw(x) = w · φ(x), φ(x) = [1, x, x2]
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Non-linear neural networks:

fw(x) = w · σ(Vφ(x)), φ(x) = [1, x]
0 1 2 3 4 5
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• Recall that our first hypothesis class was linear (in x) predictors, which for regression means that the predictors are lines.

• However, we also showed that you could get predictors that are non-linear in x by simply changing the feature extractor φ. For example,
adding the feature x2 gave us quadratic predictors.

• One disadvantage of this approach is that if x were d-dimensional, one would need O(d2) features and corresponding weights to learn an
arbitrary quadratic in d dimensions. This can present considerable computational and statistical challenges.

• We will show that neural networks are a way to build complex nonlinear predictors without creating a large number of complex feature
extractors by hand

• What do neural networks get us? A common misconception that neural networks are more expressive than other models but this isnt necessarily
true. You can define φ to be extremely large, to the point where it can approximate arbitrary smooth functions. This idea of using feature
maps to approximate complex functions is called a kernel based method. So, there is no inherent benefit in terms of expressive power to using
neural networks.

• Rather, one core benefit of neural networks is that they yield non-linear predictors in a more compact way and an often more computationally-
tractable way. For instance, you might not need O(d2) features to represent the desired non-linear predictor.



Motivating example

Example: predicting car collision

Input: positions of two oncoming cars x = [x1, x2]

Output: whether safe (y = +1) or collide (y = −1)

Unknown: safe if cars sufficiently far: y = sign(|x1 − x2| − 1)

x1 x2 y

0 2 1

2 0 1

0 0 -1

2 2 -1
-3 -2 -1 0 1 2 3

x1

-3

-2

-1

0

1

2

3

x
2
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• As a motivating example, consider the problem of predicting whether two cars are going to collide given the their positions (as measured from
distance from one side of the road). In particular, let x1 be the position of one car and x2 be the position of the other car.

• Suppose the true output is 1 (safe) whenever the cars are separated by a distance of at least 1. This relationship can be represented by the
decision boundary which labels all points in the interior region between the two red lines as negative, and everything on the exterior (on either
side) as positive.

• Of course, this true input-output relationship is unknown to the learning algorithm, which only sees training data. So, we want to learn the
decision boundary that separates the blue points from the yellow points. (This is essentially the famous XOR problem that was impossible to
fit using linear classifiers. And you can see that no single line will separate these points.)



Decomposing the problem

Test if car 1 is far right of car 2:

h1(x) = 1[x1 − x2 ≥ 1]

Test if car 2 is far right of car 1:

h2(x) = 1[x2 − x1 ≥ 1]

Safe if at least one is true:

f(x) = sign(h1(x) + h2(x)) -3 -2 -1 0 1 2 3

x1

-3

-2

-1

0

1

2

3

x
2

h1(x)

h2(x)

x h1(x) h2(x) f(x)

[0, 2] 0 1 +1

[2, 0] 1 0 +1

[0, 0] 0 0 −1

[2, 2] 0 0 −1
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• One way to motivate neural networks is the idea of problem decomposition.

• The intuition is to break up the full problem into two subproblems: the first subproblem tests if car 1 is to the far right of car 2; the second
subproblem tests if car 2 is to the far right of car 1 Then the final output is 1 iff at least one of the two subproblems returns 1.

• Concretely, we can define h1(x) to be the output of the first subproblem, which is a simple linear decision boundary (in fact, the right line in
the figure).

• Analogously, we define h2(x) to be the output of the second subproblem, which is also linear.

• Note that h1(x) and h2(x) take on values 0 or 1 instead of -1 or +1.

• The points can then be classified by first computing h1(x) and h2(x), the subproblems, and then simply adding the two outputs. This is one
way to compose the results of each subproblem into f(x).

• Note that everything here is basically linear, but we have stacked these components to form a non-linear predictor.



Rewriting using vector notation

Intermediate subproblems:

h1(x) = 1[x1 − x2 ≥ 1] = 1[[−1,+1,−1] · [1, x1, x2] ≥ 0]

h2(x) = 1[x2 − x1 ≥ 1] = 1[[−1,−1,+1] · [1, x1, x2] ≥ 0]

h(x) = 1

[ −1 +1 −1
−1 −1 +1

] 1
x1

x2

 ≥ 0


Predictor:

f(x) = sign(h1(x) + h2(x)) = sign([1, 1] · h(x))
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• Now let us rewrite this predictor f(x) using vector notation. This will be helpful as we go forward and define neural networks more formally.

• We can define a feature vector [1, x1, x2] and a corresponding weight vector, where the dot product thresholded yields exactly h1(x).

• We do the same for h2(x).

• We put the two subproblems into one single equation by stacking the weight vectors into one matrix, to produce a vector-valued function
h that combines h1 and h2. We can do this since the input feature vector is the same. You can see the equivalence by remembering that
left-multiplication by a matrix is equivalent to taking the dot product with each row. By convention, the thresholding at 0 (1[· ≥ 0]) applies
element-wise.

• Finally, we can define the predictor in terms of a simple dot product between another weight vector and h.

• Now of course, we don’t know the weight vectors, but we can learn them from the training data!



Avoid zero gradients

Problem: gradient of h1(x) with respect to v1 is 0

h1(x) = 1[v1 · φ(x) ≥ 0]

Solution: replace with an activation function σ with non-zero gradients

-5 -3 0 3 5

z = v1 · φ(x)

0

1

3

4

5

σ
(z
)

Threshold: 1[z ≥ 0]

Logistic: 1
1+e−z

ReLU: max(z, 0)

h1(x) = σ(v1 · φ(x))
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• Later we’ll show how to perform learning using gradient descent, but we can anticipate one problem from the types of functions that we
decided to use.
• For example, take a look at subproblem h1. The gradient of h1(x) with respect to v1 is always zero because of the threshold function. We

saw this issue before in the context of the zero-one loss function.
• To fix this, we replace the threshold function with what is called an activation function which has non-zero gradients, making it possible to

optimize through
• Classically, neural networks approxiate the threshold funciton using the logistic function σ(z), which is a softer version of the threshold

function but has non-zero gradients everywhere.
• However, even though the gradients are non-zero, they can be quite small when |z| is large. This phenomenon is known as saturation, and it

still makes optimizing with the logistic function very difficult, and is one of the reasons why it took longer for neural networks to catch on.
• In 2012, Glorot et al. introduced the ReLU activation function, which stands for rectifying linear unit, and which is simply max(z, 0). This

has the advantage that at least on the positive side, the gradient does not vanish; it does not go to zero even when z is large (though on the
negative side, the gradient is always zero). As a bonus, ReLU is easier to compute (only max, no exponentiation). In practice, ReLU works
well and has become the de facto activation function of choice.
• Note that if the activation function were linear (e.g., the identity function), then the gradients would always be nonzero, but you would lose

the expressive power of a neural network. This is because, if you remove the nonlinearity entirely – when you multiply h with our weight
vector, the resulting function is fully linear. So, stacking together h1 and our second layer would still be linear.

• Therefore, that there is a tension between wanting an activation function that is non-linear so that we can represent more complex functions
but also wanting to have non-zero gradients so that we can optimize the weights. ReLU has served as a good compromise between the two.



Two-layer neural networks

Intermediate subproblems:
h(x)

=σ
( V

φ(x)

)
Predictor (classification):

fV,w(x) = sign
( w

·

h(x) )
Interpret h(x) as a learned feature representation!

Hypothesis class:

F = {fV,w : V ∈ Rk×d,w ∈ Rk}
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• Now we are finally ready to define the hypothesis class of two-layer neural networks.

• We start with a feature vector φ(x).

• We multiply it by a weight matrix V (whose rows can be interpreted as the weight vectors of the k intermediate subproblems.

• Then we apply the activation function σ to each of the k components to get the hidden representation h(x) ∈ Rk. You can think of this as
the solution to the subproblems
• Now, we can actually interpret h(x) as a learned feature vector (representation), which is derived from the original non-linear feature vector
φ(x).

• Given h(x), we simply perform linear classification or regression – take the dot product with a weight vector w to get the score used to drive
either regression or classification.
• The hypothesis class is then the set of all such predictors obtained by varying both the first-layer weight matrix V and the second-layer weight

vector w. So, unlike linear predictors, we now have two sets of weights.
• One way to think about this is that we have subproblems that are learning the features, and then we simply have a linear predictor on top of

this learned representation. And, both the features and the linear predictor on top are being learned.



Deep neural networks

Linear predictor:

score =
w

·

φ(x)

2-layer neural network:

score =
w

· σ
( V

φ(x) )
3-layer neural network:

score =
w

· σ
( V2

σ
( V1

φ(x) ) )
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• Now, can we go even further? We currently have a linear classifier on top of a simple feature extractor. We can expand this and put another
function in between the two that can combine simple features to make more complex ones. This is the basic idea behind multi-layer neural
networks.

• How does this work? As a warm-up, for a linear predictor (which you can think of as the precursor to a 2-layer neural network), the score
that drives prediction is simply a dot product between a weight vector and a feature vector.

• We just saw for a two-layer neural network, we take our features and apply a linear layer V first, followed by a non-linearity σ (giving us
learned features), and then take the dot product.

• To obtain a three-layer neural network, we repeat this process. We apply a linear layer and a non-linearity. This is the basic building block,
and can be iterated any number of times. No matter now deep the neural network is, the top layer is always a linear function, and all the
layers below that can be interpreted as defining a (possibly very complex) hidden feature vector.

• In practice, you would also have a bias term or offset (e.g., Vφ(x) + b). We have omitted all bias terms for notational simplicity.



Layers represent multiple levels of abstractions
[figure from Honglak Lee]
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• It can be difficult to understand what a sequence of these linear algebra operations means, and what (matrix multiply, non-linearity) operations
buy you when they are stacked.

• To provide intuition, suppose the input feature vector φ(x) is a vector of all the pixels in an image.

• Then each layer can be thought of as producing an increasingly abstract representation of the input. The first layer detects edges, the second
might detect object parts, and the third layer might detect entire objects or faces.

• Though we haven’t talked about learning neural networks, it turns out that these kinds of abstractions are learned automatically when we
train neural networks on real data and inspect what is learned. This kind of emergent phenomenon is also what makes neural networks pretty
fascinating.



Why depth?
φ(x)

h1(x) h2(x) h3(x) h4(x)
score

Intuitions:

• Multiple levels of abstraction

• Multiple steps of computation

• Empirically works well

• Theory is still incomplete
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• Beyond learning hierarchical feature representations, deep neural networks can be interpreted in a few other ways.

• One perspective is that each layer can be thought of as performing some computation, and therefore deep neural networks can be thought of
as performing multiple steps of computation.

• But ultimately, the real reason why deep neural networks are interesting is because they work well in practice. They have achieved very
impressive performance in multiple different domains, which canot be said for many other kinds of models.

• From a theoretical perspective, we have a very incomplete explanation for why depth is important. The original motivation from McCul-
loch/Pitts in 1943 showed that neural networks can be used to simulate a bounded computation logic circuit. Separately it has been shown
that depth k+1 logic circuits can represent more functions than depth k circuites. However, neural networks are real-valued and might have
types of computations which don’t fit neatly into logical paradigm. Obtaining a better theoretical understanding is an active area of research
in statistical learning theory.



Summary

score =
w

· σ(

V
φ(x)

)

• Intuition: decompose problem into intermediate parallel subproblems

• Deep networks iterate this decomposition multiple times

• Hypothesis class contains predictors ranging over weights for all layers

• Next up: learning neural networks
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• To summarize this section, we started with a toy problem (the XOR problem) and used it to motivate neural networks, which decompose a
problem into intermediate subproblems, which are solved in parallel.

• Deep networks iterate this multiple times to build increasingly high-level representations of the input.

• Next, we will see how we can learn a neural network by choosing the weights for all the layers.



Roadmap

Topics in the lecture:

Nonlinear features

Feature templates

Neural networks

Backpropagation
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• How should we train these models? We are going to use gradient descent

• but it still seems hard to compute the gradient for all of the weights in deep neural networks.

• We are now going to discuss backpropagation which lets us compute gradients automatically given a specification of our model.



Motivation: regression with four-layer neural networks

Loss on one example:

Loss(x, y,V1,V2,V3,w) = (w · σ(V3σ(V2σ(V1φ(x))))− y)2

Stochastic gradient descent:

V1 ← V1 − η∇V1Loss(x, y,V1,V2,V3,w)

V2 ← V2 − η∇V2Loss(x, y,V1,V2,V3,w)

V3 ← V3 − η∇V3Loss(x, y,V1,V2,V3,w)

w← w − η∇wLoss(x, y,V1,V2,V3,w)

How to get the gradient without doing manual work?
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• So far, we’ve defined neural networks, which take an initial feature vector φ(x) and sends it through a sequence of matrix multiplications and
non-linear activations σ. At the end, we take the dot product between a weight vector w to produce the score.

• In regression, we predict the score, and use the squared loss, which looks at the squared difference betwen the score and the target y.

• Recall that we can use stochastic gradient descent to optimize the training loss. Now, we need to update all the weight matrices, not just
a single weight vector. This can be done by taking the gradient with respect to each weight vector/matrix separately, and updating each
parameter with the gradient descent update.

• We can now proceed to take the gradient of the loss function with respect to the various weight vector/matrices. You should know how to
do this: in principle, you can simply apply the chain rule. But grinding through this complex expression by hand can be quite tedious, as you
will need to apply the chain rule 6 or 7 times. What if we had a way for this to be done automatically for us?



Computation graphs

Loss(x, y,V1,V2,V3,w) = (w · σ(V3σ(V2σ(V1φ(x))))− y)2

Definition: computation graph

A directed acyclic graph whose root node represents the final mathematical expression
and each node represents intermediate subexpressions.

Upshot: compute gradients via general backpropagation algorithm

Purposes:

• Automatically compute gradients (how TensorFlow and PyTorch work)

• Gain insight into modular structure of gradient computations
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• This is where computation graphs are helpful.

• A computation graph is a directed acyclic graph that represents an arbitrary mathematical expression, such as the loss of a model. The root
node of this graph represents the final expression, and the other nodes represent intermediate subexpressions.

• After having constructed the graph, we can compute all the gradients we want by running the general-purpose backpropagation algorithm,
which operates on an arbitrary computation graph.

• There are two purposes to using computation graphs. The first and most obvious one is that it avoids having us to do pages of calculus, and
instead delegates this to a computer. This is what packages such as TensorFlow or PyTorch do, and essentially all non-trivial deep learning
models are trained using this idea.

• The second purpose is that by defining the graph, we can gain more insight into the nature of how gradients are computed in a modular way,
and give you more intuition about how these networks are trained.



Functions as boxes

c = a+ b

+

a b

∂c
∂a = 1 ∂c

∂b = 1

c

c = a · b

·

a b

∂c
∂a = b ∂c

∂b = a

c

(a+ ε) + b = c+ 1ε

a+ (b+ ε) = c+ 1ε

(a+ ε)b = c+ bε

a(b+ ε) = c+ aε

Gradients: how much does c change if a or b changes?
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• The first conceptual step is to think of functions as nodes in a graph that take a set of inputs and produces an output.

• For example, take c = a + b. The key question that we want to ask: if we change a by a small amount ε, how much does the output c
change? In this case, the output c is also perturbed by 1ε, so the gradient (or the partial derivative) is 1. We put this gradient on the edge
of the graph.

• We can handle c = a · b in a similar way.

• Intuitively, the gradient is a measure of local sensivity: how much input perturbations get amplified when they go through the various functions.



Basic building blocks

+

a b

1 1

−

a b

1 −1

·

a b

b a

(·)2

a

2a

max

a b

1[a > b] 1[a < b]

σ

a

σ(a)(1− σ(a))
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• Here are some more examples of simple functions and their gradients. Let’s walk through them together.

• These should be familiar from basic calculus. All we’ve done is present them in a visual way.

• We already saw addition, which has gradients of 1 with respect to a and 1 with respect to b, and subtraction is similar but with a -1 for the
second term. We also saw multiplication, where the gradient with respect to a is b and vice versa. Squaring, by applying the chain rule, gives
us 2 times the input which is a, so 2a.

• For the max function that takes the max of a and b, changing a only impacts the max iff a > b; and analogously for b.

• For the logistic function σ(a) = 1
1+e−a , a bit of algebra produces the gradient. You can chack this by hand if you would like. You can also

check that the gradient is zero when |a| → ∞.
• While this is hopefully all quite simple and straightforward, it turns out that these building blocks are all we need to build up many of the

more complex and potentially scarier looking functions that we’ll encounter when building and computing gradients for neural networks.



Function composition

(·)2

(·)2

a

∂b
∂a = 2a

∂c
∂b = 2b

c

b

Chain rule:

∂c
∂a = ∂c

∂b
∂b
∂a = (2b)(2a) = (2a2)(2a) = 4a3
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• Given these building blocks, we can now put them together to create more complex functions.

• Consider applying some function (e.g., squared) to a to get b, and then applying some other function (e.g., squared) to get c.

• What is the gradient of c with respect to a?

• We know from our building blocks the gradients on the edges.

• So how do we combine them? The final answer is given by the chain rule from calculus. We just multiply the two gradients together.

• You can verify that this yields the correct answer (2b)(2a) = 4a3.

• This visual intuition will help us better understand how to compute gradients for much more complex functions.



Linear classification with hinge loss

max

−

1 ·

·

w φ(x)

φ(x)

y

y

−1

0

1[1−margin > 0]

loss

margin

score

Loss(x, y,w) = max{1−w · φ(x)y, 0}

∇wLoss(x, y,w) = −1[margin < 1]φ(x)y

+

a b

1 1

−

a b

1 −1

·

a b

b a

(·)2

a

2a

max

a b

1[a > b] 1[a < b]

σ

a

σ(a)(1− σ(a))
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• Now let’s turn to our first real-world example: the hinge loss for linear classification. We already computed the gradient before, but let’s do
it using computation graphs.

• We can construct the computation graph for this expression from the bottom up. At the leaves are the inputs and the constants, and the
root is the full loss. Each internal node is labeled with the operation (e.g., ·) and is labeled with a variable naming that subexpression (e.g.,
margin).

• In red, we have highlighted the weights w, which is what we want to take gradients with respect to. Then, the central question is how small
perturbations in w affect the loss.

• We can do this by examining each edge from the path from w to loss, and compute the gradient using our handy reference of building blocks.

• Then, the gradient is the product of the edge-wise gradients from w to the loss output.

• Thus, we see that instead of doing a lot of new algebraic computations, we can simply compose each of the building blocks that we had
already computed before.



Two-layer neural networks

(·)2

−

·

w σ

·

V φ(x)

φ(x)

h ◦ (1− h)

h w

y

1

2(residual)

h

score

residual

loss

Loss(x, y,V,w) = (w · σ(Vφ(x))− y)2

∇wLoss(x, y,V,w) = 2(residual)h

∇VLoss(x, y,V,w) = 2(residual)w ◦ h ◦ (1− h)φ(x)>

+

a b

1 1

−

a b

1 −1

·

a b

b a

(·)2

a

2a

max

a b

1[a > b] 1[a < b]

σ

a

σ(a)(1− σ(a))
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• We now finally turn to neural networks, and the idea is essentially the same using the same building blocks.

• Specifically, consider a two-layer neural network driving the squared loss.

• Let’s build the computation graph bottom up.

• Now we need to take the gradient of the loss with respect to our weights w and V. Again, these are just the product of the gradients on the
paths from w or V to the loss node at the root.

• Note that the two gradients have in common the the first two terms. Common paths result in common subexpressions for the gradient.

• For w, the gradient computation is relatively simple. What about V? There are some technicalities when dealing with vectors: I have been
talking about gradients this whole time, but when a function is vector valued, what we actually want is the Jacobian Gradients are a special
case when the function’s output is a single scalar value.

• First, the ◦ in h ◦ (1−h) is elementwise multiplication (not the dot product), since the non-linearity σ is applied elementwise. You can verify
this by hand by taking the derivative for each entry of the vector and looking at the resulting vector of derivatives.

• Second, notice the transpose for the gradient expression with respect to V. This looks a bit unusual, but it happens because unlike everything
weve done, V is a matrix (not a vector) and we are actually taking Jacobians because Vφ(x) is a vector-valued function.

• You can work through this by hand, but to see one check that this is right, notice that the gradient of V needs to have the same dimensions
as V and this transpose gives this the right dimension. Checking that the dimensions of your gradiente match the weights is always a good
sanity check.

• This computation graph also highlights the modularity of the hypothesis class and loss function. You can pick any hypothesis class (linear
predictors or neural networks) to drive the score, and the score can be fed into any loss function (squared, hinge, etc.).



Backpropagation

(·)2

−

·

w = [3, 1] φ(x) = [1, 2]

φ(x) = [1, 2]

y = 2

1

2(residual)

score = 5

residual = 3

loss = 9

[6, 12]

6

6

1
Loss(x, y,w) = (w · φ(x)− y)2

w = [3, 1], φ(x) = [1, 2], y = 2

backpropagation

∇wLoss(x, y,w) = [6, 12]

Definition: Forward/backward values

Forward: fi is value for subexpression rooted at i

Backward: gi =
∂loss
∂fi

is how fi influences loss

Algorithm: backpropagation algorithm

Forward pass: compute each fi (from leaves to root)

Backward pass: compute each gi (from root to leaves)
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• So far, we have mainly used the graphical representation to visualize the computation of function values and gradients for our conceptual
understanding.

• Now let us introduce the backpropagation algorithm, which a general procedure for computing gradients given only the specification of the
function.

• Let us go back to the simplest example: linear regression with the squared loss.

• All the quantities that we’ve been computing have been so far symbolic, but the actual algorithm works on real numbers and vectors. So let’s
use concrete values to illustrate the backpropagation algorithm.

• The backpropagation algorithm has two phases: forward and backward. In the forward phase, we take all of the inputs and compute a forward
value fi for each node, coresponding to the evaluation of that subexpression.

• Let’s work through the example. Our inputs are phi, y, and w, which we can use to populate our leaf nodes. Then we compute every
subexpression that we can: first the score by taking the dot product between the features and the weights, then the residual using the score
and y, finally the loss using the residual. This was the forward phase.

• After the forward pass is the backward phase. In the backward phase, we compute a backward value gi for each node, which is the gradient
of the root (i.e. the loss) with respect to that node. Because of the chain rule, this gradient is the product of all the gradients on the edges
from the node to the root. To compute this backward value, we simply take the parent’s backward value and multiply by the gradient on the
edge to the parent.

• Let’s work through the example. We will always start with the value of 1 because the gradient of the loss with respect to itself is 1. To get
the gradient w.r.t. the residual, we multiple 1 by 2 times the residual, which gives us 6. Now we continue working backwards: since the
next edge has a gradient of 1 we get a backwards value of 6. Finally, we get to the weights (which is exactly what we want to compute the
gradient with respect to) and multiply 6 with the features to get our gradient update.

• Note that both fi and gi can either be scalars, vectors, or matrices, but fi and gi have the same dimensionality as each other.



A note on optimization

minV,w TrainLoss(V,w)

Linear predictors Neural networks

(convex) (non-convex)

Optimization of neural networks is in principle hard
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• So now we can apply the backpropagation algorithm and compute gradients, stick them into stochastic gradient descent, and get some answer
out.

• One question which we haven’t addressed is whether stochastic gradient descent will work in the sense of actually finding the weights that
minimize the training loss.

• For linear predictors (using the squared loss or hinge loss), TrainLoss(w) is a convex function (like the picture on the left), which means that
SGD (with an appropriate step size) is theoretically guaranteed to converge to the global optimum.

• However, for neural networks, TrainLoss(V,w) is typically a non-convex function of the weights which means that there are multiple local
optima, and SGD is not guaranteed to converge to the global optimum. There are many settings that SGD fails both theoretically and
empirically, but in practice, SGD on neural networks can work much better than theory would predict, provided certain precautions are taken
such as proper choice of initialization and step size. The gap between theory and practice is not particularly well understood and an active
area of research.



How to train neural networks

score =
w

· σ(

V
φ(x)

)

• Careful initialization (random noise, pre-training)

• Overparameterization (more hidden units than needed)

• Adaptive step sizes (AdaGrad, Adam)

Don’t let gradients vanish or explode!
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• Training a neural network is very much like driving a manual transmission car. In practice, there are some ”tricks” that are needed to make
things work properly. I’ll just name a few to give you a sense of the considerations:

• Initialization (where you start the weights) matters for non-convex optimization. Unlike for linear models, you can’t start your weights at zero
or else all of the gradients will all be zero. Instead, you want to initialize with a small amount of random noise, which breaks ties and allows
the optimization to proceed.

• It is common to use overparameterized neural networks, ones with more hidden units (k) and depth than what is needed, because then there
are more ”chances” that some of them will pick out on the right signal,

• There are small but important extensions of stochastic gradient descent that allow the step size to be tuned per weight, which allows the
optimizer to behave better.

• Perhaps one high-level piece of advice is that when training a neural network, it is important to monitor the gradients. If they vanish (get
too small), then training won’t make progress. If they explode (get too big), then training will be unstable.



Summary

(·)2

−

·

w σ

·

V φ(x)

φ(x)

h ◦ (1− h)

h w

y

1

2(residual)

h

score

residual

loss

• Computation graphs: visualize and understand gradients

• Backpropagation: general-purpose algorithm for computing gradients
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• The most important concept in this last part of the lecture is the idea of a computation graph, which allows us to represent arbitrary
mathematical expressions, by utilizing simple building blocks. They hopefully have given you a more visual and better understanding of what
gradients are about.

• The backpropagation algorithm allows us to simply write down an expression, and never have to take a gradient manually again. However,
it is still important to understand how the gradient arises, so that when you try to train a deep neural network and your gradients vanish, you
know how to think about debugging your network by looking at internal nodes.

• The generality of computation graphs and backpropagation makes it possible to iterate very quickly on new types of models and loss functions.
This is one of the reasons why deep learning has grown quickly and tackled so many different problems.



Lecture Recap

• Nonlinear features: nonlinear predictors with linear machinery

• Feature templates: organization of features, including sparse features

• Neural networks: learn nonlinear features through composition of linear classifiers

• Backpropagation: general-purpose method for computing gradients using computation
graph
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• To recap the entire lecture, we saw two different ways to construct more expressive predictors that are not simply linear functions.

• Nonlinear features gave us a way to construct nonlinear predictors with all of the machinery of linear regression and classification, essentially
by preprocessing the inputs.

• Feature templates provided an systematic way to define such features, and we saw how dictionaries can be used to efficiently represent sparse
features.

• Then, we saw how we can learn features more automatically using neural networks that essentially stack and compose linear classifiers –
interleaving linear weight matrices and nonlinear activation functions.

• Finally, we saw that we can compute gradients of neural networks with backpropagation by taking a forward and backward pass through the
computation graph.


