CS221 Problem Workout

Week 1

1) Problem 1: Gradient and Gradient Descent

(i) Let $\phi(x): \mathbb{R} \mapsto \mathbb{R}^{d}$, $\mathbf{w} \in \mathbb{R}^{d}$. Consider the following objective function (a.k.a. loss function).

$$
\operatorname{Loss}(x, y, \mathbf{w})= \begin{cases}1-2(\mathbf{w} \cdot \phi(x)) y & \text { if }(\mathbf{w} \cdot \phi(x)) y \leq 0 \\ (1-(\mathbf{w} \cdot \phi(x)) y)^{2} & \text { if } 0<(\mathbf{w} \cdot \phi(x)) y \leq 1 \\ 0 & \text { if }(\mathbf{w} \cdot \phi(x)) y>1\end{cases}
$$

where $y \in \mathbb{R}$. Compute the gradient $\nabla_{\mathbf{w}} \operatorname{Loss}(x, y, \mathbf{w})$.
(ii) Write out the Gradient Descent update rule for some function TrainLoss(w) : $\mathbb{R}^{d} \mapsto$ \mathbb{R}.
(iii) Let $d=2$ and $\phi(x)=[1, x]$. Consider the following loss function.

$$
\begin{equation*}
\operatorname{TrainLoss}(\mathbf{w})=\frac{1}{2}\left(\operatorname{Loss}\left(x_{1}, y_{1}, \mathbf{w}\right)+\operatorname{Loss}\left(x_{2}, y_{2}, \mathbf{w}\right)\right) \tag{1}
\end{equation*}
$$

Compute $\nabla_{w} \operatorname{TrainLoss}(\mathbf{w})$ for the following values of $x_{1}, y_{1}, x_{2}, y_{2}, \mathbf{w}$.

$$
\begin{gathered}
\mathbf{w}=\left[0, \frac{1}{2}\right], \\
x_{1}=-2, \quad y_{1}=1, \\
x_{2}=-1, \quad y_{2}=-1 .
\end{gathered}
$$

(iv) Perform two iterations of Gradient Descent to minimize the objective function $\operatorname{TrainLoss}(\mathbf{w})=\frac{1}{2}\left(\operatorname{Loss}\left(x_{1}, y_{1}, w\right)+\operatorname{Loss}\left(x_{2}, y_{2}, w\right)\right)$ with values for $x_{1}, y_{1}, x_{2}, y_{2}$ as above. Use initialization $\mathbf{w}^{0}=\left[0, \frac{1}{2}\right]$ and step size $\eta=\frac{1}{2}$.

2) Problem 2: Gradient computation

(i) Let $\phi(x): \mathbb{R} \mapsto \mathbb{R}^{d}$, $\mathbf{w} \in \mathbb{R}^{d}$, and $f(x, \mathbf{w})=\mathbf{w} \cdot \phi(x)$. Consider the following loss function.

$$
\begin{equation*}
\operatorname{Loss}(x, y, \mathbf{w})=\frac{1}{2} \max \{2-(\mathbf{w} \cdot \phi(x)) y, 0\}^{2} \tag{2}
\end{equation*}
$$

Compute its gradient $\nabla_{\mathbf{w}} \operatorname{Loss}(x, y, \mathbf{w})$.
3) Problem 3: Vector visualization

Recall that we can visualize a vector $\mathbf{w} \in \mathbb{R}^{d}$ as a point in d-dimensional space. Let us now visualize some vectors in 2 dimensions on pen and paper.
(i) Consider $\mathbf{x} \in \mathbb{R}^{2}$. Draw the line (i.e. the "decision boundary") that separates between vectors having a positive dot product with weights $\mathbf{w}=[3,-2]$ and those having a negative dot product. Shade the part of the 2D plane that contains vectors satisfying $\mathbf{w} \cdot \mathbf{x}>0$.
Hint: It might help to write out the expression for the dot product and seeing the relation between x_{1} and x_{2} that leads to a positive dot product. You could also use the geometric interpretation of the dot product.
(ii) Repeat the above for $\mathbf{w}=[2,0]$ and $\mathbf{w}=[0,2]$.
(iii) A small twist: visualize the set of vectors where $\mathbf{w} \cdot \mathbf{x} \geq 1$ for $\mathbf{w}=[3,-2]$.
(iv) Consider the following element-wise inequality notation. For two vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{d}$,

$$
\begin{equation*}
\mathbf{a} \leq \mathbf{b} \Longleftrightarrow a_{i} \leq b_{i} \forall i=1,2, \ldots d \tag{3}
\end{equation*}
$$

Suppose we have a matrix $A \in \mathbb{R}^{2 \times 2}$ and a vector $\mathbf{b} \in \mathbb{R}^{2}$ as follows.

$$
A=\left[\begin{array}{cc}
3 & -2 \tag{4}\\
2 & 0
\end{array}\right], \mathbf{b}=[1,0] .
$$

Visualize the set of vectors where $A \mathbf{x} \geq \mathbf{b}$. Hint: A matrix vector product is a collection of dot products, and the above set can be obtained by the intersection of two of the sets constructed in the previous questions.

4) Problem 4: More gradient computations

(i) Compute the gradient of the loss function below.

$$
\begin{equation*}
\operatorname{Loss}(x, y, \mathbf{w})=\sigma(-(\mathbf{w} \cdot \phi(x)) y) \tag{5}
\end{equation*}
$$

where $\sigma(z)=(1+\exp (-z))^{-1}$ is the logistic function.
(ii) Suppose we have the following loss function.

$$
\begin{equation*}
\operatorname{Loss}(x, y, \mathbf{w})=\max \{1-\lfloor(\mathbf{w} \cdot \phi(x)) y\rfloor, 0\} \tag{6}
\end{equation*}
$$

where $\lfloor a\rfloor$ returns a rounded down to the nearest integer. Determine what the gradient of this function looks like, and whether gradient descent is suitable to optimize this loss function.

