CS221 Problem Workout

Week 1

1) Problem 1: Gradient and Gradient Descent

(i) Let $\phi(x) : \mathbb{R} \mapsto \mathbb{R}^d$, $w \in \mathbb{R}^d$. Consider the following objective function (a.k.a. loss function).

$$\text{Loss}(x, y, w) = \begin{cases}
1 - 2(w \cdot \phi(x))y & \text{if } (w \cdot \phi(x))y \leq 0 \\
(1 - (w \cdot \phi(x))y)^2 & \text{if } 0 < (w \cdot \phi(x))y \leq 1 \\
0 & \text{if } (w \cdot \phi(x))y > 1,
\end{cases}$$

where $y \in \mathbb{R}$. Compute the gradient $\nabla_w \text{Loss}(x, y, w)$.

(ii) Write out the Gradient Descent update rule for some function $\text{TrainLoss}(w) : \mathbb{R}^d \mapsto \mathbb{R}$.

(iii) Let $d = 2$ and $\phi(x) = [1, x]$. Consider the following loss function.

$$
\text{TrainLoss}(w) = \frac{1}{2} \left(\text{Loss}(x_1, y_1, w) + \text{Loss}(x_2, y_2, w) \right).
$$

(1)

Compute $\nabla_w \text{TrainLoss}(w)$ for the following values of x_1, y_1, x_2, y_2, w.

$$
w = \begin{bmatrix} 0, \frac{1}{2} \end{bmatrix},
$$

$$
x_1 = -2, \quad y_1 = 1,
$$

$$
x_2 = -1, \quad y_2 = -1.
$$

(iv) Perform two iterations of Gradient Descent to minimize the objective function $\text{TrainLoss}(w) = \frac{1}{2} \left(\text{Loss}(x_1, y_1, w) + \text{Loss}(x_2, y_2, w) \right)$ with values for x_1, y_1, x_2, y_2 as above. Use initialization $w^0 = [0, \frac{1}{2}]$ and step size $\eta = \frac{1}{2}$.

2) Problem 2: Gradient computation

(i) Let $\phi(x) : \mathbb{R} \mapsto \mathbb{R}^d$, $w \in \mathbb{R}^d$, and $f(x, w) = w \cdot \phi(x)$. Consider the following loss function.

$$\text{Loss}(x, y, w) = \frac{1}{2} \max\{2 - (w \cdot \phi(x))y, 0\}^2.$$

(2)

Compute its gradient $\nabla_w \text{Loss}(x, y, w)$.

3) **Problem 3: Vector visualization**

Recall that we can visualize a vector \(\mathbf{w} \in \mathbb{R}^d \) as a point in \(d \)-dimensional space. Let us now visualize some vectors in 2 dimensions on pen and paper.

(i) Consider \(\mathbf{x} \in \mathbb{R}^2 \). Draw the line (i.e. the “decision boundary”) that separates between vectors having a positive dot product with weights \(\mathbf{w} = [3, -2] \) and those having a negative dot product. Shade the part of the 2D plane that contains vectors satisfying \(\mathbf{w} \cdot \mathbf{x} > 0 \).

Hint: It might help to write out the expression for the dot product and seeing the relation between \(x_1 \) and \(x_2 \) that leads to a positive dot product. You could also use the geometric interpretation of the dot product.
(ii) Repeat the above for $\mathbf{w} = [2, 0]$ and $\mathbf{w} = [0, 2]$.
(iii) A small twist: visualize the set of vectors where \(\mathbf{w} \cdot \mathbf{x} \geq 1 \) for \(\mathbf{w} = [3, -2] \).
(iv) Consider the following element-wise inequality notation. For two vectors \(\mathbf{a}, \mathbf{b} \in \mathbb{R}^d \),

\[
\mathbf{a} \leq \mathbf{b} \iff a_i \leq b_i \ \forall i = 1, 2, \ldots d.
\]

(3) Suppose we have a matrix \(\mathbf{A} \in \mathbb{R}^{2 \times 2} \) and a vector \(\mathbf{b} \in \mathbb{R}^2 \) as follows.

\[
\mathbf{A} = \begin{bmatrix} 3 & -2 \\ 2 & 0 \end{bmatrix}, \mathbf{b} = [1, 0].
\]

(4) Visualize the set of vectors where \(\mathbf{A}\mathbf{x} \geq \mathbf{b} \). Hint: A matrix vector product is a collection of dot products, and the above set can be obtained by the intersection of two of the sets constructed in the previous questions.
4) Problem 4: More gradient computations

(i) Compute the gradient of the loss function below.

\[\text{Loss}(x, y, w) = \sigma(- (w \cdot \phi(x)) y), \]

where \(\sigma(z) = (1 + \exp(-z))^{-1} \) is the logistic function.

(ii) Suppose we have the following loss function.

\[\text{Loss}(x, y, w) = \max\{1 - [(w \cdot \phi(x)) y], 0\}, \]

where \(\lfloor a \rfloor \) returns \(a \) rounded down to the nearest integer. Determine what the gradient of this function looks like, and whether gradient descent is suitable to optimize this loss function.