CS221 Problem Workout

Week 2

1) [CA session] Problem 1: Least-Squares Linear Regression

In last week's module we studied the linear regression algorithm, which solves a regression problem using a linear predictor via optimizing the objective

$$
\begin{equation*}
\operatorname{TrainLoss}(\mathbf{w})=\frac{1}{\left|\mathcal{D}_{\text {train }}\right|} \sum_{(\mathbf{x}, y) \in \mathcal{D}_{\text {train }}}(\mathbf{w} \cdot \phi(\mathbf{x})-y)^{2} \tag{1}
\end{equation*}
$$

The training loss was minimized via gradient descent, which works iteratively to decrease the training loss. As mentioned in the module, we can actually solve for the optimal weights \mathbf{w}^{\star} in closed-form. In this problem we will derive the normal equations used to solve for this estimator.

2) [CA session] Problem 2: Non-linear features

Consider the following two training datasets of (x, y) pairs:

- $\mathcal{D}_{1}=\{(-1,+1),(0,-1),(1,+1)\}$.
- $\mathcal{D}_{2}=\{(-1,-1),(0,+1),(1,-1)\}$.

Observe that neither dataset is linearly separable if we use $\phi(x)=x$, so let's fix that. Define a two-dimensional feature function $\phi(x)$ such that:

- There exists a weight vector \mathbf{w}_{1} that classifies \mathcal{D}_{1} perfectly (meaning that \mathbf{w}_{1}. $\phi(x)>0$ if x is labeled +1 and $\mathbf{w}_{1} \cdot \phi(x)<0$ if x is labeled -1); and
- There exists a weight vector \mathbf{w}_{2} that classifies \mathcal{D}_{2} perfectly.

Note that the weight vectors can be different for the two datasets, but the features $\phi(x)$ must be the same.

Some additional food for thought: Is every dataset linearly separable in some feature space? In other words, given pairs $\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)$, can we find a feature extractor ϕ such that we can perfectly classify $\left(\phi\left(\mathbf{x}_{1}\right), y_{1}\right), \ldots,\left(\phi\left(x_{n}\right), y_{n}\right)$ for some linear model \mathbf{w} ? If so, is this a good feature extractor to use?

3) [CA session] Problem 3: Backpropagation

Consider the following function

$$
\operatorname{Loss}(x, y, z, w)=2(x y+\max \{w, z\})
$$

Run the backpropagation algorithm to compute the four gradients (each with respect to one of the individual variables) at $x=3, y=-4, z=2$ and $w=-1$. Use the following nodes: addition, multiplication, max, multiplication by a constant.

4) [breakout, optional] Problem 4: Non-linear decision boundaries

Suppose we are performing classification where the input points are of the form $\left(x_{1}, x_{2}\right) \in$ \mathbb{R}^{2}. We can choose any subset of the following set of features:

$$
\begin{equation*}
\mathcal{F}=\left\{x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}, x_{1}, x_{2}, \frac{1}{x_{1}}, \frac{1}{x_{2}}, 1, \mathbf{1}\left[x_{1} \geq 0\right], \mathbf{1}\left[x_{2} \geq 0\right]\right\} \tag{2}
\end{equation*}
$$

For each subset of features $F \subseteq \mathcal{F}$, let $D(F)$ be the set of all decision boundaries corresponding to linear classifiers that use features F.
For each of the following sets of decision boundaries E, provide the minimal F such that $D(F) \supseteq E$. If no such F exists, write 'none'.

- E is all lines [CA hint]:
- E is all circles centered at the origin:
\qquad
- E is all circles:
\qquad
- E is all axis-aligned rectangles:
- E is all axis-aligned rectangles whose lower-right corner is at $(0,0)$:

5) [breakout, optional] Problem 5: K-means

Consider doing ordinary K-means clustering with $K=2$ clusters on the following set of 3 one-dimensional points:

$$
\begin{equation*}
\{-2,0,10\} \tag{8}
\end{equation*}
$$

Recall that K-means can get stuck in local optima. Describe the precise conditions on the initialization $\mu_{1} \in \mathbb{R}$ and $\mu_{2} \in \mathbb{R}$ such that running K-means will yield the global optimum of the objective function. Notes:

- Assume that $\mu_{1}<\mu_{2}$.
- Assume that if in step 1 of K-means, no points are assigned to some cluster j, then in step 2, that centroid μ_{j} is set to ∞.
- Hint: try running K-means from various initializations μ_{1}, μ_{2} to get some intuition; for example, if we initialize $\mu_{1}=1$ and $\mu_{2}=9$, then we converge to $\mu_{1}=-1$ and $\mu_{2}=10$.

