
CS221 Problem Workout Solutions
Week 2

1) [CA session] Problem 1: Least-Squares Linear Regression

In last week’s module we studied the linear regression algorithm, which solves a regres-
sion problem using a linear predictor via optimizing the objective

TrainLoss(w) =
1

|Dtrain|
∑

(x,y)∈Dtrain

(w · φ(x)− y)2. (1)

The training loss was minimized via gradient descent, which works iteratively to de-
crease the training loss. As mentioned in the module, we can actually solve for the
optimal weights w? in closed-form. In this problem we will derive the normal equations
used to solve for this estimator.

Solution We let n = |Dtrain| so that we can write Equation 1 as

TrainLoss(w) =
1

n

n∑
i=1

(w · φ(xi)− yi)2. (2)

.

What this shows us is that the training loss takes n real numbers, squares each one,
and then adds them all up. But this is exactly the squared Euclidean norm of an
n-dimensional vector! In mathematical notation, we can write

TrainLoss(w) =
1

n

∥∥∥∥∥∥∥
w · φ(x1)− y1

...
w · φ(xn)− yn


∥∥∥∥∥∥∥
2

2

. (3)

This might look a bit cluttered, but we’ll introduce some additional notation to clean
things up. First, we define the n-dimensional vector

y =

y1...
yn

 . (4)

In other words, we take each of the n target variables and put them into a column
vector. Next, we define the matrix

1

X =

φ(x1)
>

...
φ(xn)

>

 . (5)

Here we take each of the feature vectors φ(x1), . . . , φ(xn), transpose them into row
vectors, and then stack them into an n × d matrix. With this X and y, we can
succinctly write the training loss as

TrainLoss(w) =
1

n
‖Xw − y‖22. (6)

This looks much better! From this point we can compute the gradient of TrainLoss(w),
set it equal to zero, and solve for the minimizer w?. If you’re comfortable with vec-
tor/matrix calculus then you can probably take it from here. Otherwise, we will
actually rework the above expression for the training loss to get it into a form that is
more amenable to taking gradients.

We will ignore the 1
n
term for now and just focus on ‖Xw − y‖22 Recall that we can

write this squared norm as

‖Xw − y‖22 = (Xw − y)>(Xw − y). (7)

To expand (7), we recall four properties of matrix transposes:

(A+B)> = A> +B>

(cA)> = cA>

(AC)> = C>A>

(c)> = c

for appropriately sized matrices A,B,C and any scalar c. Then (7) becomes

(Xw − y)>(Xw − y) = (w>X> − y>)(Xw − y) (8)
= w>X>Xw −w>X>y − y>Xw + y>y. (9)

As it turns out, the two middle terms on the right-hand side of (9) are equal, so we can
combine them. To see why this is true, we first observe that both terms are scalars,
and hence they are equal to their transposes. In particular,

w>X>y = w>(X>y) = (w>(X>y))> = (X>y)>w, (10)

2

where the first equality follows from the associativity of matrix multiplication, and the
last equality follows from the product rule for matrix transposes. In addition, we also
have y>X = (X>y)>, so (9) becomes

w>X>Xw − 2(X>y)>w + y>y. (11)

Phew! From here, we can take the gradient with respect to w. We need two gradient
identities that you can prove if you’re bored on a rainy day:

∇w(w
>Aw) = Aw + A>w (12)

∇w(a
>w) = a (13)

for any square matrix A ∈ Rd×d and any vector a ∈ Rd. In particular, notice that if
A is symmetric, then Equation 12 simplifies to 2Aw. Since X>X is symmetric (check
this!), the gradient of TrainLoss with respect to w is (notice we reintroduce the 1

n
term)

1

n
(2X>Xw − 2X>y). (14)

Here, the y>y term has a gradient of zero with respect to w. Setting (14) equal to 0
gives us the famous normal equations :

X>Xw = X>y. (15)

From here, there are technically two possibilities. If X>X is invertible (which it usually
is), then we have the unique minimizer

w? = (X>X)−1X>y, (16)

and we are done! If X>X is not invertible, then things are a bit trickier. We can still
solve for a minimizer of the training loss, but this minimizer will not be unique.

3

2) [CA session] Problem 2: Non-linear features

Consider the following two training datasets of (x, y) pairs:

• D1 = {(−1,+1), (0,−1), (1,+1)}.
• D2 = {(−1,−1), (0,+1), (1,−1)}.

Observe that neither dataset is linearly separable if we use φ(x) = x, so let’s fix that.

Define a two-dimensional feature function φ(x) such that:

• There exists a weight vector w1 that classifies D1 perfectly (meaning that w1 ·
φ(x) > 0 if x is labeled +1 and w1 · φ(x) < 0 if x is labeled −1); and

• There exists a weight vector w2 that classifies D2 perfectly.

Note that the weight vectors can be different for the two datasets, but the features
φ(x) must be the same.

Solution One option is φ(x) = [1, x2], and using w1 = [−1, 2] and w2 = [1,−2].
Then in D1:

• For x = −1, w1 · φ(x) = [−1, 2] · [1, 1] = 1 > 0

• For x = 0, w1 · φ(x) = [−1, 2] · [1, 0] = −1 < 0

• For x = 1, w1 · φ(x) = [−1, 2] · [1, 1] = 1 > 0

In D2:

• For x = −1, w2 · φ(x) = [1,−2] · [1, 1] = −1 < 0

• For x = 0, w2 · φ(x) = [1,−2] · [1, 0] = 1 > 0

• For x = 1, w2 · φ(x) = [1,−2] · [1, 1] = −1 < 0

Note that there are many options that work, so long as -1 and 1 are separated from 0.

Some additional food for thought: Is every dataset linearly separable in some feature
space? In other words, given pairs (x1, y1), . . . , (xn, yn), can we find a feature extractor
φ such that we can perfectly classify (φ(x1), y1), . . . , (φ(xn), yn) for some linear model
w? If so, is this a good feature extractor to use?

Solution In theory, yes we can. If we assume that our inputs x1, . . . ,xn are distinct,
then we can construct a feature map φ : xi 7→ yi for i = 1, . . . , n. By setting w? = [1],
it’s clear that

yiw
? · φ(xi) = yi ∗ yi = 1 > 0, i = 1, . . . , n, (17)

4

so w? correctly classifies all the points in the dataset.

Hopefully, it’s clear that this is a poor choice of feature map. For one, this feature ex-
tractor is undefined for any points outside of the training set! But even more broadly,
this process is not at all generalizeable. We are essentially just memorizing our dataset
instead of learning patterns and structures within the data that will allow us to accu-
rately predict new points in the future. While minimizing training loss is an important
part of the machine learning process (the aforementioned procedure gives you zero
training loss!), it does not guarantee you good performance in the future.

5

3) [CA session] Problem 3: Backpropagation

Consider the following function

Loss(x, y, z, w) = 2(xy +max{w, z})

Run the backpropagation algorithm to compute the four gradients (each with respect
to one of the individual variables) at x = 3, y = −4, z = 2 and w = −1. Use the
following nodes: addition, multiplication, max, multiplication by a constant.

Solution When calculating the gradients, we run backpropagation from the root
node to the leaves nodes. As shown on the computation graph below, the purple
values are the gradients of Loss with respect to each node.

6

4) [breakout, optional] Problem 4: Non-linear decision boundaries

Suppose we are performing classification where the input points are of the form (x1, x2) ∈
R2. We can choose any subset of the following set of features:

F =

{
x21, x

2
2, x1x2, x1, x2,

1

x1
,
1

x2
, 1,1[x1 ≥ 0],1[x2 ≥ 0]

}
(18)

For each subset of features F ⊆ F , let D(F) be the set of all decision boundaries
corresponding to linear classifiers that use features F .

For each of the following sets of decision boundaries E, provide the minimal F such
that D(F) ⊇ E. If no such F exists, write ‘none’.

• E is all lines [CA hint]:

(19)

• E is all circles centered at the origin:

(20)

• E is all circles:

(21)

• E is all axis-aligned rectangles:

(22)

• E is all axis-aligned rectangles whose lower-right corner is at (0, 0):

(23)

Solution

• Lines: x1, x2, 1 (ax1 + bx2 + c = 0)

• Circles centered at the origin: x21, x22, 1 (x21 + x22 = r2)

• Circles centered anywhere in the plane: x21, x22, x1, x2, 1 ((x1−a)2+(x2−b)2 = r2)

• Axis aligned rectangles: not possible (need features of the form 1[x1 ≤ a])

• Axis aligned rectangles with lower right corner at (0, 0): not possible

7

5) [breakout, optional] Problem 5: K-means

Consider doing ordinary K-means clustering with K = 2 clusters on the following
set of 3 one-dimensional points:

{−2, 0, 10}. (24)

Recall that K-means can get stuck in local optima. Describe the precise conditions on
the initialization µ1 ∈ R and µ2 ∈ R such that running K-means will yield the global
optimum of the objective function. Notes:

• Assume that µ1 < µ2.

• Assume that if in step 1 of K-means, no points are assigned to some cluster j,
then in step 2, that centroid µj is set to ∞.

• Hint: try running K-means from various initializations µ1, µ2 to get some intu-
ition; for example, if we initialize µ1 = 1 and µ2 = 9, then we converge to µ1 = −1
and µ2 = 10.

Solution The objective is minimized for µ1 = −1 and µ2 = 10. First, note that if
all three points end up in one cluster, K-means definitely fails to recover the global
optimum. Therefore, −2 must be assigned to the first cluster, and 10 must be assigned
to the second cluster. 0 can be assigned to either: If 0 is assigned to cluster 1, then
we’re done. If it is assigned to cluster 2, then we have µ1 = −2, µ2 = 5; in the next
iteration, 0 will be assigned to cluster 1 since its closer. Therefore, the condition on
the initialization written formally is | − 2−µ1| < | − 2−µ2| and |10−µ1| > |10−µ2|.

8

