CS221 Section 3: Search

DP, UCS, A^{*}

What are the "ingredients" for a well-defined search problem?

Definition: search problem -

- $s_{\text {start }}$: starting state
- Actions (s) : possible actions
- $\operatorname{Cost}(s, a)$: action cost
- $\operatorname{Succ}(s, a)$: successor
- Is End (s) : found solution?

Section Problem

There exists \boldsymbol{N} cities, labeled from 1 to N.
There are one-way roads connecting some pairs of cities. The road connecting city i and city j takes $c(i, j)$ time to traverse. However, one can only travel from a city with smaller label to a city with larger label (each road is one-directional).

From city 1, we want to travel to city N. What is the shortest time required to make this trip, given the constraint that we should visit more odd-labeled cities than even labeled cities?

Example

1. What is the shortest path (without constraint)?
2. What is the shortest path under the given constraint (visit more odd than even cities)?

Example

[C1, C2, C4, C5] has cost 14 but visits equal number of odd and even cities.

Best path is [C1, C3, C4, C5] with cost 16.

State Representation

Key idea: state
A state is a summary of all the past actions sufficient to choose future actions optimally.

How would you represent a state for this problem?

State Representation

We need to know where we are currently at: current_city
We need to know how many odd and even cities we have visited thus far: \#odd, \#even

State Representation: (current_city, \#odd, \#even)
Total number of states: $\mathbf{O}\left(\mathbf{N}^{3}\right)$

Can We Do Better?

Check if all the information is really required
Instead of storing \#odd and \#even, we can store \#odd \#even directly; this still allows us to check whether \#odd \#even > 0 at (N, \#odd, \#even)
(current_city, \#odd - \#even) $\rightarrow \mathbf{O}\left(\mathbf{N}^{2}\right)$ states

Original Graph

State Graph

State $s=(i, d)$ (current city, \#odd-\#even)

Precise Formulation of Problem

State $s:=(i, d)$ (current city, \#odd-\#even)
$E:=\{(i, j) \mid \exists \operatorname{road}$ from ito j$\}$
Actions $(s):=\{\operatorname{move}(j) \mid(i, j) \in E\}$
$\operatorname{Cost}(s, \operatorname{move}(j)):=c(i, j)$
$\operatorname{Succ}(s, a):= \begin{cases}(j, d+1) & j \text { odd } \\ (j, d-1) & j \text { even }\end{cases}$
Start := $(1,1)$
$\operatorname{isEnd}(s):=i=N$ and $d>0$

Which algorithms can you use to solve this problem? Any pros and cons?

Solving the Problem

Since we are computing shortest path, which is some form of optimization, we consider DP and UCS.

Recall:

- DP can handle negative edges but works only on DAGs
- UCS works on general graphs, but cannot handle negative edges
- Which one works for our problem?

Solving the Problem

Since we are computing shortest path, which is some form of optimization, we consider DP and UCS.

Recall:

- DP can handle negative edges but works only on DAGs
- UCS works on general graphs, but cannot handle negative edges

Since we have a DAG and all edges are positive, both work!

Solving the Problem: Dynamic Programming

$$
\text { FutureCost }(s)= \begin{cases}0 & \text { if isEnd }(s) \\ \min _{a \in \operatorname{Actions}(s)}[\operatorname{Cost}(s, a)+\operatorname{FutureCost}(\operatorname{Succ}(s, a))] & \text { otherwise }\end{cases}
$$

If s has no successors, we set it as undefined

Simulation of DP

Solving the Problem: Uniform Cost Search

Algorithm: uniform cost search [Dijkstra, 1956]
Add $s_{\text {start }}$ to frontier (priority queue) Repeat until frontier is empty:

Remove s with smallest priority p from frontier
If IsEnd (s) : return solution
Add s to explored
For each action $a \in \operatorname{Actions}(s)$:
Get successor $s^{\prime} \leftarrow \operatorname{Succ}(s, a)$
If s^{\prime} already in explored: continue
Update frontier with s^{\prime} and priority $p+\operatorname{Cost}(s, a)$

Simulation of UCS

Explored:
 (C1, 1): 0

Frontier:
(C3, 2) : 3
$(\mathrm{C} 2,0): 5$
\rightarrow Frontier is a priority queue.

State $s=(i, d)$ (current city, \#odd-\#even)

Simulation of UCS

Explored: (C1, 1): 0 $(\mathrm{C} 3,2): 3$

Frontier:
(C2, 0) : 5
$(\mathrm{C} 4,1): 9$

State $s=(i, d)$ (current city, \#odd-\#even)

Simulation of UCS

Explored: (C1, 1): 0 (C3, 2) : 3 $(\mathrm{C} 2,0): 5$

Frontier: (C3, 1) : 6 (C4, -1): 7 $(\mathrm{C} 4,1): 9$

State $s=(i, d)$ (current city, \#odd-\#even)

Simulation of UCS

Explored:
(C1, 1): 0
(C3, 2) : 3
$(\mathrm{C} 2,0): 5$
(C3, 1): 6

Frontier: (C4, -1) : 7
(C4, 1): 9
(C4, 0): 12

State $s=(i, d)$ (current city, \#odd-\#even)

Simulation of UCS

Explored: (C1, 1): 0
(C3, 2) : 3
$(\mathrm{C} 2,0): 5$
(C3, 1): 6
(C4, -1) : 7

Frontier: (C4, 1): 9
$(\mathrm{C} 4,0): 12$ $(C 5,0): 14$

State $s=(i, d)$ (current city, \#odd-\#even)

Simulation of UCS

Explored:
(C1, 1) : 0
(C3, 2) : 3
$(\mathrm{C} 2,0): 5$
(C3, 1): 6
(C4, -1) : 7
(C4, 1): 9

Frontier:
(C4, 0) : 12
$(C 5,0): 14$ $(\mathrm{C} 5,2): 16$

State $s=(i, d)$ (current city, \#odd-\#even)

Simulation of UCS

Explored:
(C1, 1) : 0
(C3, 2) : 3
$(\mathrm{C} 2,0): 5$
(C3, 1) : 6
(C4, -1) : 7
(C4, 1): 9
$(\mathrm{C} 4,0): 12$

Frontier: (C5, 0) : 14 $(\mathrm{C} 5,2): 16$ (C5, 1) : 19

State $s=(i, d)$ (current city, \#odd-\#even)

Simulation of UCS

Explored:
(C1, 1): 0
(C3, 2) : 3
$(\mathrm{C} 2,0): 5$
(C3, 1): 6
(C4, -1) : 7
(C4, 1): 9
(C4, 0) : 12
$(C 5,0): 14$

Frontier: (C5, 2) : 16 $(\mathrm{C} 5,1): 19$

State $s=(i, d)$ (current city, \#odd-\#even)

Simulation of UCS

Explored:
(C1, 1): 0
(C3, 2) : 3
$(\mathrm{C} 2,0): 5$
(C3, 1) : 6
(C4, -1) : 7
(C4, 1): 9
$(\mathrm{C} 4,0): 12$
$(\mathrm{C} 5,0): 14$ $(\mathrm{C} 5,2): 16$

Frontier:
(C5, 1) : 19

STOP!

(Since we found C5 with \#odd-\#even > 0)

State $s=(i, d)$ (current city, \#odd-\#even)

Comparison between DP and UCS

N total states, n of which are closer than goal state Runtime of DP is $\mathrm{O}(\mathrm{N})$

Runtime of $U C S$ is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$

Example:
Start state C1, end state C5
-DP explores $\mathrm{O}(\mathrm{N})$ states. -UCS will explore \{C1, C2, C5\} only. C 3 will be in the frontier and C 4 will be unexplored.

DP cannot handle cycles

Shortest path is [C1, C3, C2, C5] with cost 13.

Hard to define subproblems in undirected or cyclic graphs.

UCS cannot handle negative edge weights

Best path is
[C1,C2,C3,C4,C5] with cost of 8 , but UCS will output [C1,C3,C4,C5] with cost of 13 because C3 is marked as 'explored' before C2.

Back to our section problem, can we do the search faster than UCS?

Use $A^{*!}$

Recap of A* Search from Lecture

A heuristic $h(s)$ is any estimate of FutureCost (s).
Run uniform cost search with modified edge costs:

$$
\operatorname{Cost}^{\prime}(s, a)=\operatorname{Cost}(s, a)+h(\operatorname{Succ}(s, a))-h(s)
$$

A heuristic h is consistent if

- $\operatorname{Cost}^{\prime}(s, a)=\operatorname{Cost}(s, a)+h(\operatorname{Succ}(s, a))-h(s) \geq 0$
- $h\left(s_{\text {end }}\right)=0$.

If h is consistent, A^{*} returns the minimum cost path.

Finding a Heuristic by Relaxation

\rightarrow try to solve an easier (less constrained) version of the problem
\rightarrow attain a problem that can be solved more efficiently

Relaxation, more formally:

Definition: relaxed search problem

A relaxation P^{\prime} of a search problem P has costs that satisfy:

$$
\operatorname{Cost}^{\prime}(s, a) \leq \operatorname{Cost}(s, a)
$$

Which heuristic would you use to solve our problem

 more efficiently? Hint: Relaxation!

Heuristic for our problem

Remove the constraint that we visit more odd cities than even cities.
$h(s)=h((i, d))=$ length of shortest path from city i to city N
Note that the modified shortest path problem has $O(N)$ states instead of $\mathbf{O}\left(\mathbf{N}^{2}\right)$.

How to compute h ?

Reverse all edges, then perform UCS starting at C5 until C1 is found.
$\rightarrow O(n \log n)$ time (where n is \# states whose distance to city CN is no farther than the distance of city C 1 to city CN)

city	C1	C2	C3	C4	C5
h	14	9	13	7	0

Original Graph

city	C1	C2	C3	C4	C5
h	14	9	13	7	0

Modified State Graph

(updated edge costs)

State $s=(i, d)$ (current city, \#odd-\#even)

Simulation of UCS (A*)

Explored:
(C1, 1): 0
Frontier:
(C2, 0): 0
$(\mathrm{C} 3,2): 2$

State $s=(i, d)$ (current city, \#odd-\#even)

Simulation of UCS (A*)

Explored:
(C1, 1): 0
(C2, 0) : 0

Frontier:
(C4, -1) : 0
$(\mathrm{C} 3,2): 2$
$(\mathrm{C} 3,1): 5$

State $s=(i, d)$ (current city, \#odd-\#even)

Simulation of UCS (A*)

Explored:
(C1, 1): 0
(C2, 0) : 0
(C4, -1) : 0

Frontier: (C5, 0) : 0 (C3, 2) : 2 (C3, 1) : 5

State $s=(i, d)$ (current city, \#odd-\#even)

Simulation of UCS (A*)

Explored:
(C1, 1): 0
(C2, 0): 0
(C4, -1) : 0
$(\mathrm{C} 5,0): 0$

Frontier: (C3, 2) : 2
$(\mathrm{C} 3,1): 5$

State $s=(i, d)$ (current city, \#odd-\#even)

Simulation of UCS (A*)

Explored:
(C1, 1): 0
(C2, 0) : 0
(C4, -1) : 0
$(\mathrm{C}, 0): 0$
$(\mathrm{C} 3,2): 2$

State $s=(i, d)$ (current city, \#odd-\#even)

Simulation of UCS (A*)

Explored:
(C1, 1): 0
(C2, 0): 0
(C4, -1) : 0
$(\mathrm{C}, 0): 0$
$(\mathrm{C} 3,2): 2$
(C4, 1): 2

State $s=(i, d)$ (current city, \#odd-\#even)

Simulation of UCS (A*)

Explored:
(C1, 1): 0
(C2, 0): 0
(C4, -1) : 0
$(\mathrm{C}, 0)$: 0
$(\mathrm{C} 3,2): 2$
(C4, 1) : 2
$(\mathrm{C}, 2)$: 2

Frontier:
(C3, 1) : 5

STOP!

State $s=(i, d)$ (current city, \#odd-\#even)

Simulation of UCS (A*)

Explored:
(C1, 1): 0
(C2, 0): 0
(C4, -1) : 0
$(\mathrm{C}, 0): 0$
$(\mathrm{C} 3,2): 2$
(C4, 1) : 2
$(C 5,2): 2$

Actual Cost is $2+h(1)=2+14=16$

Comparison of States visited

UCS

UCS(A*)

Explored:	Frontier:
(C1, 1):0	(C5, 1):19
(C3, 2):3	
(C2, 0):5	
$($ C3, 1) $: 6$	
(C4, -1):7	
(C4, 1):9	
(C4, 0):12	
(C5, 0):14	
(C5, 2):16	

Explored:
(C1, 1):0
(C2, 0): 0
(C4, -1) : 0
(C5, 0): 0
(C3, 2) : 2
(C4, 1): 2
(C5, 2) : 2

Comparison of States visited

UCS

UCS(A*)

```
Explored: Frontier:
(C1, 1):0 (C5, 1):19
(C3, 2):3
(C2, 0):5
(C3, 1):6
(C4, -1) :7
(C4, 1):9
(C4, 0):12
(C5, 0):14
(C5, 2):16
Frontier:
(C5, 1) : 19
```

Explored:
(C1, 1): 0
(C2, 0) : 0
(C4, -1) : 0
(C5, 0) : 0
(C3, 2) : 2
(C4, 1) : 2
(C5, 2) : 2

Frontier:
(C3, 1) : 5

Summary

- States Representation/Modelling
- make state representation compact, remove unnecessary information
- DP
- underlying graph cannot have cycles
- visit all reachable states, but no log overhead
- UCS
- actions cannot have negative cost
- visit only a subset of states, log overhead
- \boldsymbol{A}^{*}
- Introduce heuristic to guide search
- ensure that relaxed problem can be solved more efficiently

Now let's practice modeling our search problems!

