CS221 Problem Workout

1) [CA session] Problem 1

(a) Sabina wants to go from her house (located at 1) to the gym (located at n).
At each location s, she can either (i) deterministically walk forward to the next
location s + 1 (takes 1 unit of time) or (ii) wait for the bus. The bus comes with
probability €, in which case, she will reach the gym in 1+ a(n — s) units of time,
where « is some parameter. If the bus doesn’t come, well, she stays put, and that
takes 1 unit of time.

1 2 3 4 n

e | | o om

We have formalized the problem as an MDP for you:
e State: s € {1,2,...,n} is Sabina’s location
e Actions(s) = {Walk, Bus}

-1 ifsd=s+1

—o00 otherwise

Reward(s, Walk, s') = {

—1l—a(n—3s) ifs=n
Reward(s,Bus, s’) = ¢ —1 if ' =5

—00 otherwise

1 ifsf=s5+1

0 otherwise

T(s'|s, Walk) = {

€ ifs"=n
o I'(s'|s,Bus) =q1—¢€ ifs'=s
0 otherwise

IsEnd(s) = 1[s = n]

Compute a closed form expression for the value of the “always walk” policy and
the “always wait for the bus” policy (using some or all of the variables €, v, n).
Assume a discount rate of v = 1.

L4 VWalk(S) =

[} VBus(S) =

e For what values of € (as a function of o and n) is it advantageous to walk
rather than take the bus?

(b) Not surprisingly, buses operate strangely in this town, and we will now assume
instead that Sabina doesn’t know the reward function nor the transition proba-
bilities. She decides to use reinforcement learning to find out. She starts by going
around town using the two different modes of transportation:

S0 (431 r o S a2 D) a3 rs 83 Qy Ta S4 Qs s Ss
1 Bus -1 1 Bus -1 1 Bus 3 3 Walk 1 4 Walk 1 5

Run the Q-learning algorithm once over the given data to compute an estimate of
the optimal Q-value Qopt (s, a). Process the episodes from left to right. Assume all
Q-values are initialized to zero, and use a learning rate of n = 0.5 and a discount
of v =1.

e Q(1, Walk) =

° Q(l, Bus) =

e (3, Walk) =

e Q(3,Bus) =

o Q(4, Walk) =

e Q(4,Bus) =

2) |[Extra Practice] Problem 2

You're programming a self-driving car that can take you from home (position 1) to
school (position n). At each time step, the car has a current position z € {1,...,n}
and a current velocity v € {0,...,m}. The car starts with v = 0, and at each time
step, the car can either increase the velocity by 1, decrease it by 1, or keep it the same;
this new velocity is used to advance x to the new position. The velocity is not allowed
to exceed the speed limit m nor return to 0.

In addition, to prevent people from recklessly cruising down Serra Mall, the university
has installed speed bumps at a subset of the n locations. The speed bumps are located
at B C {1,...,n}. The car is not allowed to enter, leave, or pass over a speed bump
with velocity more than k € {1,...,m}. Your goal is to arrive at position n with
velocity 1 in the smallest number of time steps.

Figure 1 shows an example with n = 9 positions and one speed bump B = {5}. If the
maximum speed is m = 3 and k = 1 for a speed bump, then an example of a legal
path is the following:

(1,0) 5 (2,1) 2 (4,2) 2 (5,1) > (6,1) B (8,2) = (9,1)

= r=2 =3 =4 |zr= t=6 |z=7 |x=8 =9
home bump school

Figure 1: An example of a legal path that takes 6 time steps with m = 3 and k = 1. We
show the position-velocity pairs (z,v) at each time step, and each number above an arrow
is an acceleration (change in velocity).

(a) It turns out that you were so excited about the AI algorithms that you didn’t
really pay much attention to the brakes of the car. As a result, when you try to
decrease the velocity by 1, with some failure probability «, the velocity actually
stays the same. To simplify our lives, assume there are no speed bumps. Assume
a reward of R if we get to school (at a velocity of 1) but 0 if we pass the school,
with a cost of 1 per time step. Let us formulate the resulting problem as an MDP:

® Sgpart = (1,0)

o Actions((z,v)) ={a € {+1,0,-1}:z+v+a<nAv+a<mA(v+a<
kv{z,...,x+v+a} N B =)} Suppose we want to apply acceleration a.
First, we want to make sure we don’t exceed the school (z +v +a < n) or
go out of the velocity range (v + a < m). Next, we want to make sure that
we’re not entering, passing through, or leaving any speed bumps at a velocity
greater than k. This is captured logically by ensuring a safe speed (v+a < k)
or checking that there are no speed bumps between x and the new location
r+v+a.

o T((«',v)|(x,v),a) = (to be filled out by you below)
e Reward((z,v),a,(2/,v)) =R 12/ =nAv =1] -1
e [sEnd((x,v)) = 1[z > n]

(i) Fill out the definition of the transition probabilities 7"

T(<I,7 U/)KI? U)v a) =

(ii) Let us explore the effect of unreliable brakes. Consider the example in Figure2.

r=1 [z=2 |zt=3 |x=4 |z=5
home school

Figure 2: An small driving environment without speed bumps.

Consider two policies:

e 7: always move with velocity 1:
m((1,0)) =+1 m((2,1))=0 m((3,1))=0 m((4,1))=0.
e m,: speed up and slow down:
m((1,0)) = +1 m((2,1)) =+1 m((4,2)) = —1.

Compute the expected utility of 71 as a function of v and R (with discount v = 1).

Compute the expected utility of 7 as a function of v and R (with discount v = 1).

For what values of @ and R does 75 obtain higher expected reward than m? Your
answer should be an expression relating o and R.

(b) Bad news: you realize that your brakes are not only faulty, but that you don’t
know how often they fail (a is unknown). Circle all of the following algorithms
that can be used to compute the optimal policy in this setting:

model-based value iteration model-free Monte Carlo SARSA Q-learning

