
CSPs: overview

Factor graph

X1 X2 X3

f1 f2 f3 f4

Definition: factor graph

Variables:

X = (X1, . . . , Xn), where Xi 2 Domaini
Factors:

f1, . . . , fm, with each fj(X) � 0

CS221 24

Factor graphs

variables

X1 X2 X3

f1 f2 f3 f4

factors

Objective: find the best assignment of values to the variables

CS221 4

As a search problem

WA

NT

SA

Q

NSW

V

T

• State: partial assignment of colors to provinces

• Action: assign next uncolored province a compatible color

What’s missing? There’s more problem structure!

• Variable ordering doesn’t a↵ect correctness, can optimize

• Variables are interdependent in a local way, can decompose

CS221 14

Variable-based models

Special cases:

• Constraint satisfaction problems

• Markov networks

• Bayesian networks

Key idea: variables

• Solutions to problems) assignments to variables (modeling).

• Decisions about variable ordering, etc. chosen by inference.

Higher-level modeling language than state-based models

CS221 16

Roadmap

Modeling

Definitions

Examples

Backtracking (exact) search

Dynamic ordering

Arc consistency

Approximate search

Beam search

Local search

CS221 18

Factors

Definition: scope and arity

Scope of a factor fj : set of variables it depends on.

Arity of fj is the number of variables in the scope.

Unary factors (arity 1); Binary factors (arity 2).

Constraints are factors that return 0 or 1.

WA

NT

SA

Q

NSW

V

T

Example: map coloring

Scope of f1(X) = [WA 6= NT] is {WA,NT}
f1 is a binary constraint

CS221 26

Assignment weights

Definition: assignment weight

Each assignment x = (x1, . . . , xn) has a weight:

Weight(x) =
mY

j=1

fj(x)

An assignment is consistent if Weight(x) > 0.

Objective: find the maximum weight assignment

argmax
x

Weight(x)

A CSP is satisfiable if maxx Weight(x) > 0.

CS221 32

Summary

• Decide on variables and domains

• Translate each desideratum into a set of factors

• Try to keep CSP small (variables, factors, domains, arities)

• When implementing each factor, think in terms of checking a solution rather than com-
puting the solution

CS221 54

Roadmap

Modeling

Definitions

Examples

Backtracking (exact) search

Dynamic ordering

Arc consistency

Approximate search

Beam search

Local search

CS221 56

Dependent factors

• Partial assignment (e.g., x = {WA : R,NT : G})

WA

NT

SA

Q

NSW

V

T

Definition: dependent factors

Let D(x,Xi) be set of factors depending on Xi and x but not on unassigned variables.

D({WA : R,NT : G}, SA) = {[WA 6= SA], [NT 6= SA]}

CS221 64

Backtracking search

Algorithm: backtracking search

Backtrack(x,w,Domains):

• If x is complete assignment: update best and return

• Choose unassigned VARIABLE Xi

• Order VALUES Domaini of chosen Xi

• For each value v in that order:

• �
Y

fj2D(x,Xi)

fj(x [{Xi : v})

• If � = 0: continue

• Domains
0 Domains via LOOKAHEAD

• If any Domains
0
i is empty: continue

• Backtrack(x [{Xi : v}, w�,Domains
0)

CS221 66

Lookahead: forward checking

Key idea: forward checking (one-step lookahead)

• After assigning a variable Xi, eliminate inconsistent values from the domains of
Xi’s neighbors.

• If any domain becomes empty, return.

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

Inconsistent!

CS221 68

Choosing an unassigned variable

WA

NT

SA

Q

NSW

V

T

Which variable to assign next?

Key idea: most constrained variable

Choose variable that has the smallest domain.

This example: SA (has only one value)

CS221 70

Ordering values of a selected variable

What values to try for Q?

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

2 + 2 + 2 = 6 consistent values 1 + 1 + 2 = 4 consistent values

Key idea: least constrained value

Order values of selected Xi by decreasing number of consistent values of neighboring

variables.

CS221 72

When to fail?

WA

NT

SA

Q

NSW

V

T

Most constrained variable (MCV):

• Must assign every variable

• If going to fail, fail early) more pruning

Least constrained value (LCV):

• Need to choose some value

• Choose value that is most likely to lead to solution
CS221 74

When do these heuristics help?

• Most constrained variable: useful when some factors are constraints (can prune assign-
ments with weight 0)

[x1 = x2] [x2 6= x3] + 2

• Least constrained value: useful when all factors are constraints (all assignment weights
are 1 or 0)

[x1 = x2] [x2 6= x3]

• Forward checking: needed to prune domains to make heuristics useful!

CS221 76

Summary

Algorithm: backtracking search

Backtrack(x,w,Domains):

• If x is complete assignment: update best and return

• Choose unassigned VARIABLE Xi (MCV)

• Order VALUES Domaini of chosen Xi (LCV)

• For each value v in that order:

• �
Y

fj2D(x,Xi)

fj(x [{Xi : v})

• If � = 0: continue

• Domains
0 Domains via LOOKAHEAD (forward checking)

• If any Domains
0
i is empty: continue

• Backtrack(x [{Xi : v}, w�,Domains
0)

CS221 78

Roadmap

Modeling

Definitions

Examples

Backtracking (exact) search

Dynamic ordering

Arc consistency

Approximate search

Beam search

Local search

CS221 80

Arc consistency

Definition: arc consistency

A variable Xi is arc consistent with respect to Xj if for each xi 2 Domaini, there
exists xj 2 Domainj such that f({Xi : xi, Xj : xj}) 6= 0 for all factors f whose
scope contains Xi and Xj .

Algorithm: enforce arc consistency

EnforceArcConsistency(Xi, Xj): Remove values from Domaini to make Xi arc con-
sistent with respect to Xj .

CS221 84

AC-3 (example)

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

WA

NT

SA

Q

NSW

V

T

AC-3

Forward checking: when assign Xj : xj , set Domainj = {xj} and enforce arc consistency on
all neighbors Xi with respect to Xj

AC-3: repeatedly enforce arc consistency on all variables

Algorithm: AC-3

S {Xj}.
While S is non-empty:

Remove any Xj from S.

For all neighbors Xi of Xj :

Enforce arc consistency on Xi w.r.t. Xj .

If Domaini changed, add Xi to S.

Xj Xi

CS221 88

Limitations of AC-3

• AC-3 isn’t always e↵ective:

WA

NT

SA

• No consistent assignments, but AC-3 doesn’t detect a problem!

• Intuition: if we look locally at the graph, nothing blatantly wrong...

CS221 90

Summary

• Enforcing arc consistency: make domains consistent with factors

• Forward checking: enforces arc consistency on neighbors

• AC-3: enforces arc consistency on neighbors and their neighbors, etc.

• Lookahead very important for backtracking search!

CS221 92

Roadmap

Modeling

Definitions

Examples

Backtracking (exact) search

Dynamic ordering

Arc consistency

Approximate search

Beam search

Local search

CS221 0

Backtracking search

CS221 6

Greedy search

Greedy search

Algorithm: greedy search

Partial assignment x {}
For each i = 1, . . . , n:

Extend:

Compute weight of each xv = x [{Xi : v}
Prune:

x xv with highest weight

Not guaranteed to find maximum weight assignment!

[demo: beamSearch({K:1})]

CS221 10

Beam search

Beam size K = 4

Beam search

Idea: keep K candidate list C of partial assignments

Algorithm: beam search

Initialize C [{}]
For each i = 1, . . . , n:

Extend:

C 0 {x [{Xi : v} : x 2 C, v 2 Domaini}
Prune:

C K elements of C 0 with highest weights

Not guaranteed to find maximum weight assignment!

[demo: beamSearch({K:3})]

CS221 14

Time complexity

n variables (depth)

Branching factor b = |Domaini|
Beam size K

Time: O(nKb logK)

CS221 16

Summary

• Beam size K controls tradeo↵ between e�ciency and accuracy

• K = 1 is greedy search (O(nb) time)

• K = 1 is BFS (O(bn) time)

Backtracking search : DFS :: beam search : pruned BFS

CS221 18

Search strategies

Backtracking/beam search: extend partial assignments

Local search: modify complete assignments

CS221 20

Exploiting locality

X1 X2 X3

t1

o1

t2

o2 o3

Weight of new assignment (x1, v, x3):

o1(x1)t1(x1, v)o2(v)t2(v, x3)o3(x3)

Key idea: locality

When evaluating possible re-assignments to Xi, only need to consider the factors that
depend on Xi.

CS221 26

Iterated conditional modes (ICM)

Algorithm: iterated conditional modes (ICM)

Initialize x to a random complete assignment

Loop through i = 1, . . . , n until convergence:

Compute weight of xv = x [{Xi : v} for each v

x xv with highest weight

X1 X2 X3

t1

o1

t2

o2 o3

X1 X2 X3

t1

o1

t2

o2 o3

X1 X2 X3

t1

o1

t2

o2 o3

[demo: iteratedConditionalModes()]

CS221 28

Convergence properties

• Weight(x) increases or stays the same each iteration

• Converges in a finite number of iterations

• Can get stuck in local optima

• Not guaranteed to find optimal assignment!

CS221 30

Summary

X1 X2 X3

t1

o1

t2

o2 o3

Algorithm Strategy Optimality Time complexity

Backtracking search extend partial assignments exact exponential

Beam search extend partial assignments approximate linear

Local search (ICM) modify complete assignments approximate linear

CS221 32

Markov networks: overview

Review: factor graphs

X1 X2 X3

f1 f2 f3 f4

Definition: factor graph

Variables:

X = (X1, . . . , Xn), where Xi 2 Domaini
Factors:

f1, . . . , fm, with each fj(X) � 0

Definition: assignment weight

Each assignment x = (x1, . . . , xn) has a weight:

Weight(x) =
mY

j=1

fj(x)

CS221 4

Definition

Definition: Markov network

A Markov network is a factor graph which defines a joint distribution over random
variables X = (X1, . . . , Xn):

P(X = x) =
Weight(x)

Z
where Z =

P
x0 Weight(x0) is the normalization constant.

x1 x2 x3 Weight(x) P(X = x)

0 1 1 4 0.15

0 1 2 4 0.15

1 1 1 4 0.15

1 1 2 4 0.15

1 2 1 2 0.08

1 2 2 8 0.31

Z = 4 + 4 + 4 + 4 + 2 + 8 = 26

Represents uncertainty!

CS221 10

Marginal probabilities

Example question: where was the object at time step 2 (X2)?

Definition: Marginal probability

The marginal probability of Xi = v is given by:

P(Xi = v) =
X

x:xi=v

P(X = x)

Object tracking example:

x1 x2 x3 Weight(x) P(X = x)

0 1 1 4 0.15

0 1 2 4 0.15

1 1 1 4 0.15

1 1 2 4 0.15

1 2 1 2 0.08

1 2 2 8 0.31

P(X2 = 1) = 0.15 + 0.15 + 0.15 + 0.15 = 0.62

P(X2 = 2) = 0.08 + 0.31 = 0.38

Note: di↵erent than max weight assignment!

CS221 12

Summary

Markov networks = factor graphs + probability

• Normalize weights to get probablity distribution

• Can compute marginal probabilities to focus on variables

CSPs Markov networks

variables random variables

weights probabilities

maximum weight assignment marginal probabilities

CS221 18

Gibbs sampling

Algorithm: Gibbs sampling

Initialize x to a random complete assignment

Loop through i = 1, . . . , n until convergence:

Set xi = v with prob. P(Xi = v | X�i = x�i)
(X�i denotes all variables except Xi)

Increment counti(xi)

Estimate P̂(Xi = xi) =
counti(xi)P
v counti(v)

X1 X2 X3

t1

o1

t2

o2 o3

X1 X2 X3

t1

o1

t2

o2 o3

X1 X2 X3

t1

o1

t2

o2 o3

Example: sampling one variable

Weight(x [{X2 : 0}) = 1 prob. 0.2

Weight(x [{X2 : 1}) = 2 prob. 0.4

Weight(x [{X2 : 2}) = 2 prob. 0.4

0 0.2 0.6 1

[demo]

CS221 22

Search versus sampling

Iterated Conditional Modes Gibbs sampling

maximum weight assignment marginal probabilities

choose best value sample a value

converges to local optimum marginals converge to correct answer*

*under technical conditions (su�cient condition: all weights positive), but could take exponen-
tial time

CS221 30

Summary

X1 X2 X3

t1

o1

t2

o2 o3

• Objective: compute marginal probabilities P(Xi = xi)

• Gibbs sampling: sample one variable at a time, count visitations

• More generally: Markov chain Monte Carlo (MCMC) powerful toolkit of randomized

procedures

CS221 32

