CS221 Problem Workout

Week 8

1) [CA session] Problem 1: The Bayesian Bag of Candies Model

You have a lot of candy left over from Halloween, and you decide to give them away to your friends. You have four types of candy: Apple, Banana, Caramel, Dark-Chocolate. You decide to prepare candy bags using the following process.

- For each candy bag, you first flip a (biased) coin Y which comes up heads $(Y=\mathrm{H})$ with probability λ and tails $(Y=\mathrm{T})$ with probability $1-\lambda$.
- If Y comes up heads $(Y=\mathrm{H})$, you make a Healthy bag, where you:
(a) Add one Apple candy with probability p_{1} or nothing with probability $1-p_{1}$;
(b) Add one Banana candy with probability p_{1} or nothing with probability $1-p_{1}$;
(c) Add one Caramel candy with probability $1-p_{1}$ or nothing with probability p_{1}
(d) Add one Dark-Chocolate candy with probability $1-p_{1}$ or nothing with probability p_{1}.
- If Y comes up tails $(Y=\mathrm{T})$, you make a Tasty bag, where you:
(a) Add one Apple candy with probability p_{2} or nothing with probability $1-p_{2}$;
(b) Add one Banana candy with probability p_{2} or nothing with probability $1-p_{2}$;
(c) Add one Caramel candy with probability $1-p_{2}$ or nothing with probability p_{2};
(d) Add one Dark-Chocolate candy with probability $1-p_{2}$ or nothing with probability p_{2}.

For example, if $p_{1}=1$ and $p_{2}=0$, you would deterministically generate: Healthy bags with one Apple and one Banana; and Tasty bags with one Caramel and one Dark-Chocolate. For general values of p_{1} and p_{2}, bags can contain anywhere between 0 and 4 pieces of candy.
Denote A, B, C, D random variables indicating whether or not the bag contains candy of type Apple, Banana, Caramel, and Dark-Chocolate, respectively.
a. (1 point)
(i) Draw the Bayesian network corresponding to process of creating a single bag.
(ii) What is the probability of generating a Healthy bag containing Apple, Banana, Caramel, and not Dark-Chocolate? For compactness, we will use the following notation to denote this possible outcome:

(Healthy, \{Apple, Banana, Caramel $\}$).

(iii) What is the probability of generating a bag containing Apple, Banana, Caramel, and not Dark-Chocolate?
(iv) What is the probability that a bag was a Tasty one, given that it contains Apple, Banana, Caramel, and not Dark-Chocolate?
b. (1 point)

You realize you need to make more candy bags, but you've forgotten the probabilities you used to generate them. So you try to estimate them looking at the 5 bags you've already made:

```
bag 1: (Healthy,{Apple, Banana})
bag 2 :
bag 3:
bag 4:
bag 5:
(Tasty, (Caramel, Dark-Chocolate\})
(Healthy, \{Apple, Banana\})
(Tasty, \(\{\) Caramel, Dark-Chocolate \(\}\) )
(Healthy, \{Apple, Banana\})
```

Estimate λ, p_{1}, p_{2} by maximum likelihood.

Estimate λ, p_{1}, p_{2} by maximum likelihood, using Laplace smoothing with parameter 1 .
c. (1 point) You find out your little brother had been playing with your candy bags, and had mixed them up (in a uniformly random way). Now you don't even know which ones were Healthy and which ones were Tasty. So you need to re-estimate λ, p_{1}, p_{2}, but now without knowing whether the bags were Healthy or Tasty.

```
bag 1: (?, {Apple, Banana, Caramel})
bag 2: (?, {Caramel, Dark-Chocolate})
bag 3: (?, {Apple, Banana, Caramel})
bag 4: (?, {Caramel, Dark-Chocolate})
bag 5: (?, {Apple, Banana, Caramel})
```

You remember the EM algorithm is just what you need. Initialize with $\lambda=0.5, p_{1}=$ $0.5, p_{2}=0$, and run one step of the EM algorithm.
(i) E-step:
(ii) M-step:

d. (1 point)

You decide to make candy bags according to a new process. You create the first one as described above. Then with probability μ, you create a second bag of the same type as the first one (Healthy or Tasty), and of different type with probability $1-\mu$. Given this type, the bag is filled with candy as before. Then with probability μ, you create a third bag of the same type as the second one (Healthy or Tasty), and of different type with probability $1-\mu$. And so on, you repeat the process M times. Denote $Y_{i}, A_{i}, B_{i}, C_{i}, D_{i}$ the variables at each time step, for $i=0, \ldots, M$. Let $X_{i}=\left(A_{i}, B_{i}, C_{i}, D_{i}\right)$.
Now you want to compute:

$$
\mathbb{P}\left(Y_{i}=\text { Healthy } \mid X_{0}=(1,1,1,0), \ldots, X_{i}=(1,1,1,0)\right)
$$

exactly for all $i=0, \ldots, M$, and you decide to use the forward-backward algorithm. Suppose you have already computed the marginals:

$$
f_{i}=\mathbb{P}\left(Y_{i}=\text { Healthy } \mid X_{0}=(1,1,1,0), \ldots, X_{i}=(1,1,1,0)\right)
$$

for some $i \geq 0$. Recall the first step of the algorithm is to compute an intermediate result proportional to

$$
\mathbb{P}\left(Y_{i+1} \mid X_{0}=(1,1,1,0), \ldots, X_{i}=(1,1,1,0), X_{i+1}=(1,1,1,0)\right)
$$

(i) Write an expression that is proportional to

$$
\mathbb{P}\left(Y_{i+1}=\text { Healthy } \mid X_{0}=(1,1,1,0), \ldots, X_{i}=(1,1,1,0), X_{i+1}=(1,1,1,0)\right)
$$

in terms of f_{i} and the parameters $p_{1}, p_{2}, \lambda, \mu$.
(ii) Write an expression that is proportional to

$$
\mathbb{P}\left(Y_{i+1}=\text { Tasty } \mid X_{0}=(1,1,1,0), \ldots, X_{i}=(1,1,1,0), X_{i+1}=(1,1,1,0)\right)
$$

in terms of f_{i} and the parameters of the model $p_{1}, p_{2}, \lambda, \mu$. The proportionality constant should be the same as in (i).
(iii) Let h be the answer for part (i), and t for part (ii). Write an expression for

$$
\mathbb{P}\left(Y_{i+1}=\text { Healthy } \mid X_{0}=(1,1,1,0), \ldots, X_{i}=(1,1,1,0), X_{i+1}=(1,1,1,0)\right)
$$

in terms of h, t and the parameters of the model $p_{1}, p_{2}, \lambda, \mu$.

