CS221 Problem Workout

Week 8

1) [CA session] Problem 1: The Bayesian Bag of Candies Model

You have a lot of candy left over from Halloween, and you decide to give them away to your friends. You have four types of candy: Apple, Banana, Caramel, Dark-Chocolate. You decide to prepare candy bags using the following process.

- For each candy bag, you first flip a (biased) coin Y which comes up heads (Y = H) with probability λ and tails (Y = T) with probability 1λ .
- If Y comes up heads (Y = H), you make a **H**ealthy bag, where you:
 - (a) Add one Apple candy with probability p_1 or nothing with probability $1 p_1$;
 - (b) Add one Banana candy with probability p_1 or nothing with probability $1-p_1$;
 - (c) Add one Caramel candy with probability $1 p_1$ or nothing with probability p_1 ;
 - (d) Add one **D**ark-Chocolate candy with probability $1 p_1$ or nothing with probability p_1 .
- If Y comes up tails (Y = T), you make a Tasty bag, where you:
 - (a) Add one Apple candy with probability p_2 or nothing with probability $1 p_2$;
 - (b) Add one Banana candy with probability p_2 or nothing with probability $1-p_2$;
 - (c) Add one Caramel candy with probability $1 p_2$ or nothing with probability p_2 ;
 - (d) Add one Dark-Chocolate candy with probability $1 p_2$ or nothing with probability p_2 .

For example, if $p_1 = 1$ and $p_2 = 0$, you would deterministically generate: Healthy bags with one Apple and one Banana; and Tasty bags with one Caramel and one Dark-Chocolate. For general values of p_1 and p_2 , bags can contain anywhere between 0 and 4 pieces of candy.

Denote A, B, C, D random variables indicating whether or not the bag contains candy of type Apple, Banana, Caramel, and Dark-Chocolate, respectively.

a. (1 point)

(i) Draw the Bayesian network corresponding to process of creating a single bag.

(ii) What is the probability of generating a Healthy bag containing Apple, Banana, Caramel, and not Dark-Chocolate? For compactness, we will use the following notation to denote this possible outcome:

(Healthy, {Apple, Banana, Caramel}).

(iii) What is the probability of generating a bag containing Apple, Banana, Caramel, and *not* Dark-Chocolate?

(iv) What is the probability that a bag was a **T**asty one, given that it contains **A**pple, **B**anana, **C**aramel, and *not* **D**ark-Chocolate?

b. (1 point)

You realize you need to make more candy bags, but you've forgotten the probabilities you used to generate them. So you try to estimate them looking at the 5 bags you've already made:

$bag \ 1:$	$(\mathbf{H}ealthy, \{\mathbf{A}pple, \mathbf{B}anana\})$
$bag \ 2:$	$(\mathbf{T}asty, {\mathbf{C}aramel, \mathbf{D}ark-Chocolate})$
$bag \ 3:$	$(\mathbf{H}ealthy, \{\mathbf{A}pple, \mathbf{B}anana\})$
$bag \ 4:$	$(\mathbf{T}asty, {\mathbf{C}aramel, \mathbf{D}ark-Chocolate})$
bag 5:	$(\mathbf{H} ealthy, \{\mathbf{A} pple, \mathbf{B} anana\})$

Estimate λ, p_1, p_2 by maximum likelihood.

Estimate λ, p_1, p_2 by maximum likelihood, using Laplace smoothing with parameter 1.

c. (1 point) You find out your little brother had been playing with your candy bags, and had mixed them up (in a uniformly random way). Now you don't even know which ones were **H**ealthy and which ones were **T**asty. So you need to re-estimate λ, p_1, p_2 , but now without knowing whether the bags were **H**ealthy or **T**asty.

$bag \ 1:$	$(?, \{Apple, Banana, Caramel\})$
bag 2:	$(?, {Caramel, Dark-Chocolate})$
$bag \ 3:$	$(?, \{Apple, Banana, Caramel\})$
bag 4:	$(?, {Caramel, Dark-Chocolate})$
bag 5:	$(?, {Apple, Banana, Caramel})$

You remember the EM algorithm is just what you need. Initialize with $\lambda = 0.5, p_1 = 0.5, p_2 = 0$, and run one step of the EM algorithm.

(i) E-step:

(ii) M-step:

d. (1 point)

You decide to make candy bags according to a new process. You create the first one as described above. Then with probability μ , you create a second bag of the same type as the first one (Healthy or Tasty), and of different type with probability $1-\mu$. Given this type, the bag is filled with candy as before. Then with probability μ , you create a third bag of the same type as the second one (Healthy or Tasty), and of different type with probability μ , you create a third bag of the same type as the second one (Healthy or Tasty), and of different type with probability $1-\mu$. And so on, you repeat the process M times. Denote Y_i, A_i, B_i, C_i, D_i the variables at each time step, for $i = 0, \ldots, M$. Let $X_i = (A_i, B_i, C_i, D_i)$.

Now you want to compute:

$$\mathbb{P}(Y_i = \mathbf{H}ealthy \mid X_0 = (1, 1, 1, 0), \dots, X_i = (1, 1, 1, 0))$$

exactly for all i = 0, ..., M, and you decide to use the forward-backward algorithm. Suppose you have already computed the marginals:

$$f_i = \mathbb{P}(Y_i = \mathbf{H}ealthy \mid X_0 = (1, 1, 1, 0), \dots, X_i = (1, 1, 1, 0))$$

for some $i \ge 0$. Recall the first step of the algorithm is to compute an intermediate result *proportional* to

$$\mathbb{P}(Y_{i+1} \mid X_0 = (1, 1, 1, 0), \dots, X_i = (1, 1, 1, 0), X_{i+1} = (1, 1, 1, 0))$$

(i) Write an expression that is **proportional** to

$$\mathbb{P}(Y_{i+1} = \mathbf{H}ealthy \mid X_0 = (1, 1, 1, 0), \dots, X_i = (1, 1, 1, 0), X_{i+1} = (1, 1, 1, 0))$$

in terms of f_i and the parameters p_1, p_2, λ, μ .

(ii) Write an expression that is **proportional** to

$$\mathbb{P}(Y_{i+1} = \mathbf{T}asty \mid X_0 = (1, 1, 1, 0), \dots, X_i = (1, 1, 1, 0), X_{i+1} = (1, 1, 1, 0))$$

in terms of f_i and the parameters of the model p_1, p_2, λ, μ . The proportionality constant should be the same as in (i).

(iii) Let h be the answer for part (i), and t for part (ii). Write an expression for

 $\mathbb{P}(Y_{i+1} = \mathbf{H}ealthy \mid X_0 = (1, 1, 1, 0), \dots, X_i = (1, 1, 1, 0), X_{i+1} = (1, 1, 1, 0))$

in terms of h, t and the parameters of the model p_1, p_2, λ, μ .