CS221 Problem Workout Solutions

Week 8

1) [CA session] Problem 1: The Bayesian Bag of Candies Model

You have a lot of candy left over from Halloween, and you decide to give them away to your friends. You have four types of candy: Apple, Banana, Caramel, Dark-Chocolate. You decide to prepare candy bags using the following process.

- For each candy bag, you first flip a (biased) coin Y which comes up heads $(Y=\mathrm{H})$ with probability λ and tails $(Y=\mathrm{T})$ with probability $1-\lambda$.
- If Y comes up heads $(Y=\mathrm{H})$, you make a Healthy bag, where you:
(a) Add one Apple candy with probability p_{1} or nothing with probability $1-p_{1}$;
(b) Add one Banana candy with probability p_{1} or nothing with probability $1-p_{1}$;
(c) Add one Caramel candy with probability $1-p_{1}$ or nothing with probability p_{1}
(d) Add one Dark-Chocolate candy with probability $1-p_{1}$ or nothing with probability p_{1}.
- If Y comes up tails $(Y=\mathrm{T})$, you make a Tasty bag, where you:
(a) Add one Apple candy with probability p_{2} or nothing with probability $1-p_{2}$;
(b) Add one Banana candy with probability p_{2} or nothing with probability $1-p_{2}$;
(c) Add one Caramel candy with probability $1-p_{2}$ or nothing with probability p_{2};
(d) Add one Dark-Chocolate candy with probability $1-p_{2}$ or nothing with probability p_{2}.

For example, if $p_{1}=1$ and $p_{2}=0$, you would deterministically generate: Healthy bags with one Apple and one Banana; and Tasty bags with one Caramel and one Dark-Chocolate. For general values of p_{1} and p_{2}, bags can contain anywhere between 0 and 4 pieces of candy.
Denote A, B, C, D random variables indicating whether or not the bag contains candy of type Apple, Banana, Caramel, and Dark-Chocolate, respectively.

Figure 1: Bayesian network for a single candy bag.

a. (1 point)

(i) Draw the Bayesian network corresponding to process of creating a single bag.

Solution Solution for part (i) is shown in Figure 1.
(ii) What is the probability of generating a Healthy bag containing Apple, Banana, Caramel, and not Dark-Chocolate? For compactness, we will use the following notation to denote this possible outcome:

$$
\text { (Healthy, \{Apple, Banana, Caramel\}). }
$$

Solution By definition, we create a Healthy bag with probability λ, and include the candies with probability $p_{1} p_{1}\left(1-p_{1}\right) p_{1}$, so the result is

$$
\lambda p_{1} p_{1}\left(1-p_{1}\right) p_{1}
$$

(iii) What is the probability of generating a bag containing Apple, Banana, Caramel, and not Dark-Chocolate?

Solution The bag could be Healthy or Tasty. We have computed the probability for the Healthy case above. For a Tasty one, a similar computation gives

$$
(1-\lambda) p_{2} p_{2}\left(1-p_{2}\right) p_{2}
$$

so the result is:

$$
\lambda p_{1} p_{1}\left(1-p_{1}\right) p_{1}+(1-\lambda) p_{2} p_{2}\left(1-p_{2}\right) p_{2}
$$

(iv) What is the probability that a bag was a Tasty one, given that it contains Apple, Banana, Caramel, and not Dark-Chocolate?

Solution Using the definition of conditional probability, we get:

$$
\frac{(1-\lambda) p_{2} p_{2}\left(1-p_{2}\right) p_{2}}{\lambda p_{1} p_{1}\left(1-p_{1}\right) p_{1}+(1-\lambda) p_{2} p_{2}\left(1-p_{2}\right) p_{2}}
$$

b. (1 point)

You realize you need to make more candy bags, but you've forgotten the probabilities you used to generate them. So you try to estimate them looking at the 5 bags you've already made:

```
bag 1: (Healthy, {Apple, Banana})
bag 2 :
bag 3:
bag 4:
bag 5:
```

(Tasty, $\{$ Caramel, Dark-Chocolate $\}$)
(Healthy, \{Apple, Banana\})
(Tasty, $\{$ Caramel, Dark-Chocolate $\}$)
(Healthy, \{Apple, Banana\})

Estimate λ, p_{1}, p_{2} by maximum likelihood.

Solution Out of 5 bags, 3 are Healthy, so $\lambda=3 / 5$. To estimate p_{1}, we only consider the 3 healthy bags. For a Healthy bag, the probability of adding Apple,Banana, not Caramel, and not Dark-Chocolateis $\left(p_{1}\right)^{4}$. For the three bags, the probability becomes $\left(p_{1}\right)^{12}$, which is maximized for $p_{1}=1$. Equivalently, to generate 3 Healthy bags, we flip a (biased) coin of parameter $p_{1} 12$ times. Since we observe 12 "heads", the maximum likelihood estimate is $p_{1}=1$. To generate 2 Tasty bags, we flip a (biased) coin of parameter $p_{2} 8$ times. Since we observe 0 "heads", the maximum likelihood estimate is $p_{2}=0$.

$$
\begin{gathered}
\lambda=3 / 5 \\
p_{1}=12 / 12=1 \\
p_{2}=0 / 8=0
\end{gathered}
$$

Estimate λ, p_{1}, p_{2} by maximum likelihood, using Laplace smoothing with parameter 1 .

Solution We just need to increment the counts in the previous solution by 1 .
\bullet

$$
\begin{gathered}
\lambda=4 / 7 \\
p_{1}=13 /(13+1) \\
p_{2}=1 /(1+9)
\end{gathered}
$$

c. (1 point) You find out your little brother had been playing with your candy bags, and had mixed them up (in a uniformly random way). Now you don't even know which ones were Healthy and which ones were Tasty. So you need to re-estimate λ, p_{1}, p_{2}, but now without knowing whether the bags were Healthy or Tasty.

$\operatorname{bag} 1:$	$(?,\{$ Apple, Banana, Caramel $\})$
$\operatorname{bag} 2:$	$(?,\{$ Caramel, Dark-Chocolate $\})$
$\operatorname{bag} 3:$	$(?,\{$ Apple, Banana, Caramel $\})$
$\operatorname{bag} 4:$	$(?,\{$ Caramel, Dark-Chocolate $\})$
bag $5:$	$(?,\{$ Apple, Banana, Caramel $\})$

You remember the EM algorithm is just what you need. Initialize with $\lambda=0.5, p_{1}=$ $0.5, p_{2}=0$, and run one step of the EM algorithm.
(i) E-step:

Solution To evaluate $P(Y=T \mid\{A, B, C\})$ we plug in the parameter values in the formula in (a),(iv), obtaining $P(Y=T \mid\{A, B, C\})=0$. To evaluate $P(Y=T \mid$ $\{C, D\})$ we use a similar formula obtaining

$$
P(Y=T \mid\{C, D\})=\frac{(1-\lambda)\left(1-p_{2}\right)^{4}}{\lambda\left(1-p_{1}\right)^{4}+(1-\lambda)\left(1-p_{2}\right)^{4}}=\frac{16}{17}
$$

The resulting weighted dataset is:

- (Healthy, $\{A, B, C\}), 1 \times 3$
- (Tasty, $\{A, B, C\}), 0$
- (Healthy, $\{C, D\}), 1 / 17 \times 2$
- (Tasty, $\{C, D\}), 16 / 17 \times 2$
(ii) M-step:

Solution Now we just do counts like in part (b). There are $3+2 / 17$ Healthy bags out of 5 . For p_{1}, each (Healthy, $\{A, B, C\}$) corresponds to 3 "heads" and 1 "tail" (probability $\left.p_{1} p_{1}\left(1-p_{1}\right) p_{1}\right)$. Each (Healthy, $\left.\{C, D\}\right)$ corresponds to 4 "tails" $\left(\left(1-p_{1}\right)^{4}\right)$. For p_{2}, each (Tasty, $\left.\{C, D\}\right)$ corresponds to 4 "tails" $\left(\left(1-p_{2}\right)^{4}\right)$. The new parameters are:

$$
\begin{gathered}
\lambda=(3+2 / 17) / 5 \\
p_{1}=9 /(9+3+4 * 2 / 17) \\
p_{2}=0
\end{gathered}
$$

d. (1 point)

You decide to make candy bags according to a new process. You create the first one as described above. Then with probability μ, you create a second bag of the same type as the first one (Healthy or Tasty), and of different type with probability $1-\mu$. Given this type, the bag is filled with candy as before. Then with probability μ, you create a third bag of the same type as the second one (Healthy or Tasty), and of different type with probability $1-\mu$. And so on, you repeat the process M times. Denote $Y_{i}, A_{i}, B_{i}, C_{i}, D_{i}$ the variables at each time step, for $i=0, \ldots, M$. Let $X_{i}=\left(A_{i}, B_{i}, C_{i}, D_{i}\right)$.
Now you want to compute:

$$
\mathbb{P}\left(Y_{i}=\text { Healthy } \mid X_{0}=(1,1,1,0), \ldots, X_{i}=(1,1,1,0)\right)
$$

exactly for all $i=0, \ldots, M$, and you decide to use the forward-backward algorithm. Suppose you have already computed the marginals:

$$
f_{i}=\mathbb{P}\left(Y_{i}=\text { Healthy } \mid X_{0}=(1,1,1,0), \ldots, X_{i}=(1,1,1,0)\right)
$$

for some $i \geq 0$. Recall the first step of the algorithm is to compute an intermediate result proportional to

$$
\mathbb{P}\left(Y_{i+1} \mid X_{0}=(1,1,1,0), \ldots, X_{i}=(1,1,1,0), X_{i+1}=(1,1,1,0)\right)
$$

(i) Write an expression that is proportional to

$$
\mathbb{P}\left(Y_{i+1}=\text { Healthy } \mid X_{0}=(1,1,1,0), \ldots, X_{i}=(1,1,1,0), X_{i+1}=(1,1,1,0)\right)
$$

in terms of f_{i} and the parameters $p_{1}, p_{2}, \lambda, \mu$.

Solution Emission: When $Y_{i+1}=$ Healthy, the probability of observing $X_{i+1}=$ $(1,1,1,0)$ is $p_{1} p_{1}\left(1-p_{1}\right) p_{1}$ as in part (a),(ii).
Transition: There are two cases: either $Y_{i}=$ Healthy, in which case we transit to $Y_{i+1}=$ Healthy with probability μ, or $Y_{i}=$ Tasty, in which case we transit to $Y_{i+1}=$ Healthy with probability $1-\mu$.

$$
\propto\left(\left(1-f_{i}\right)(1-\mu)+f_{i} \mu\right) p_{1} p_{1}\left(1-p_{1}\right) p_{1}
$$

(ii) Write an expression that is proportional to

$$
\mathbb{P}\left(Y_{i+1}=\text { Tasty } \mid X_{0}=(1,1,1,0), \ldots, X_{i}=(1,1,1,0), X_{i+1}=(1,1,1,0)\right)
$$

in terms of f_{i} and the parameters of the model $p_{1}, p_{2}, \lambda, \mu$. The proportionality constant should be the same as in (i).

Solution (Similar to the previous question)
Emission: When $Y_{i+1}=$ Tasty, the probability of observing $X_{i+1}=(1,1,1,0)$ is $p_{2} p_{2}\left(1-p_{2}\right) p_{2}$.
Transition: There are two cases: either $Y_{i}=$ Healthy, in which case we transit to $Y_{i+1}=$ Tasty with probability $1-\mu$, or $Y_{i}=$ Tasty, in which case we transit to $Y_{i+1}=$ Tasty with probability μ.

$$
\propto\left(\left(f_{i}\right)(1-\mu)+\left(1-f_{i}\right) \mu\right) p_{2} p_{2}\left(1-p_{2}\right) p_{2}
$$

(iii) Let h be the answer for part (i), and t for part (ii). Write an expression for

$$
\mathbb{P}\left(Y_{i+1}=\text { Healthy } \mid X_{0}=(1,1,1,0), \ldots, X_{i}=(1,1,1,0), X_{i+1}=(1,1,1,0)\right)
$$

in terms of h, t and the parameters of the model $p_{1}, p_{2}, \lambda, \mu$.

Solution Since h and t have same proportionality constant, we get the true value of the probability by normalization:

$$
h /(h+t)
$$

