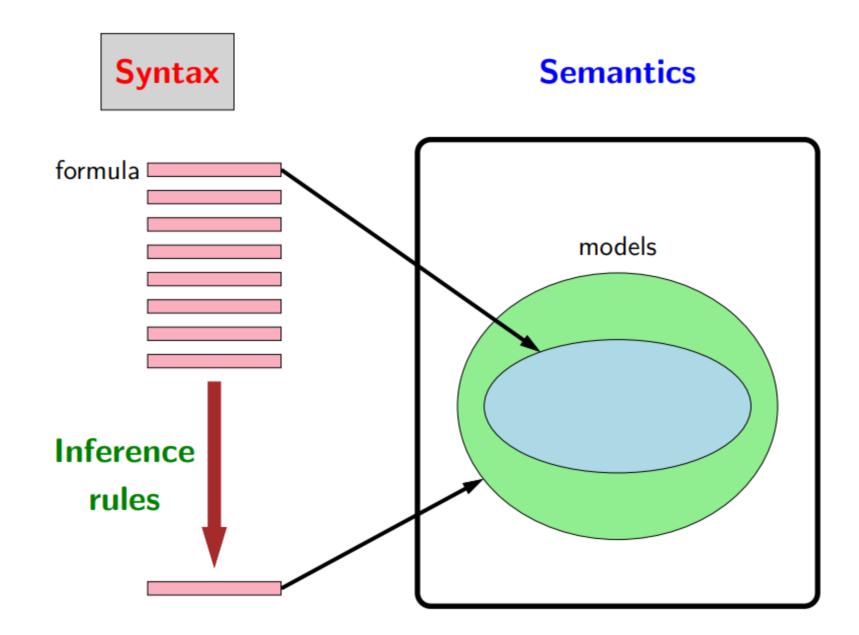
Logic CS221 Section

Logic

- Overview
 - Logic-based models
 - Motivation
 - Logical language
- Ingredients of a logic
 - Syntax: defines a set of valid formulas
 - Semantics: for each formula, specify a set of models
 - Inference rules: what new formulas can be added
- Propositional logic
- First-order logic



Propositional logic syntax

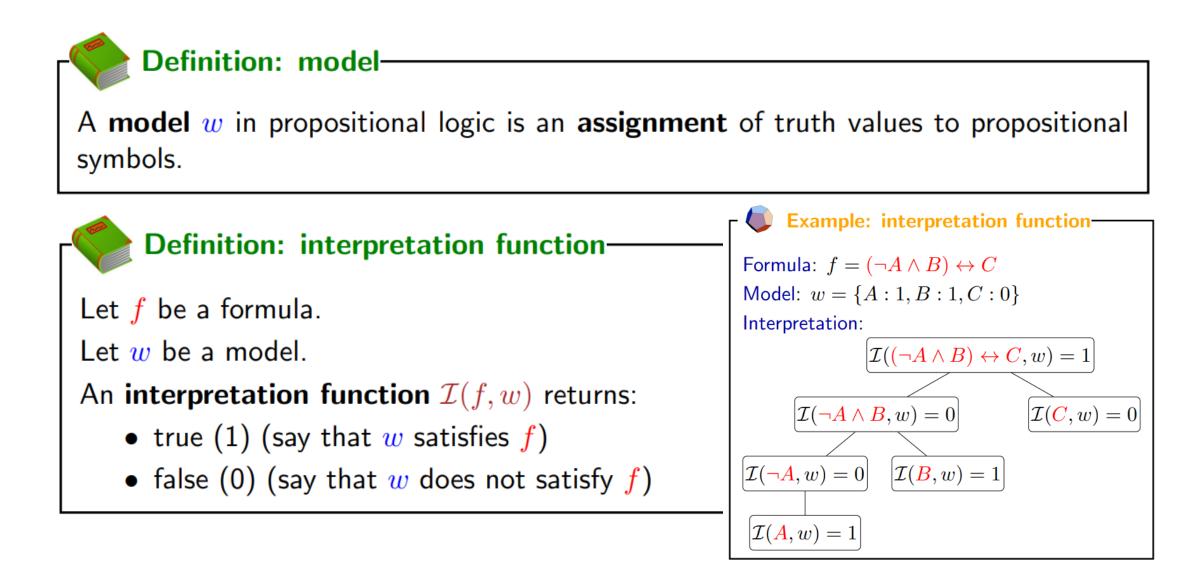
Propositional symbols (atomic formulas): A, B, C

Logical connectives: $\neg, \land, \lor, \rightarrow, \leftrightarrow$

Build up formulas recursively—if f and g are formulas, so are the following:

- Negation: $\neg f$
- Conjunction: $f \wedge g$
- Disjunction: $f \lor g$
- Implication: $f \to g$
- Biconditional: $f \leftrightarrow g$

Propositional logic semantics



First-order logic syntax

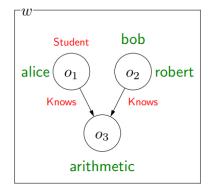
Terms (refer to objects):

- Constant symbol (e.g., arithmetic)
- Variable (e.g., x)
- Function of terms (e.g., Sum(3, x))

Formulas (refer to truth values):

- Atomic formulas (atoms): predicate applied to terms (e.g., Knows(x, arithmetic))
- Connectives applied to formulas (e.g., $Student(x) \rightarrow Knows(x, arithmetic)$)
- Quantifiers applied to formulas (e.g., $\forall x \operatorname{Student}(x) \rightarrow \operatorname{Knows}(x, \operatorname{arithmetic})$)

First-order logic semantics



- Nodes are objects, labeled with constant symbols
- Directed edges are binary predicates, labeled with predicate symbols; unary predicates are additional node labels

Definition: model in first-order logic-

A model w in first-order logic maps:

• constant symbols to objects

 $w(alice) = o_1, w(bob) = o_2, w(arithmetic) = o_3$

• predicate symbols to tuples of objects

 $w(Knows) = \{(o_1, o_3), (o_2, o_3), \dots\}$

First-order logic: Propositionalization

Knowledge base in first-order logic

Student(alice) \land Student(bob) $\forall x$ Student(x) \rightarrow Person(x) $\exists x$ Student(x) \land Creative(x)

Knowledge base in propositional logic-

Studentalice \land Studentbob

```
(Studentalice \rightarrow Personalice) \land (Studentbob \rightarrow Personbob)
```

 $(Studentalice \land Creativealice) \lor (Studentbob \land Creativebob)$

Semantics: models and knowledge base

Definition: models-

Let $\mathcal{M}(f)$ be the set of **models** w for which $\mathcal{I}(f, w) = 1$.

Definition: Knowledge base-

A **knowledge base** KB is a set of formulas representing their conjunction / intersection:

$$\mathcal{M}(\mathsf{KB}) = \bigcap_{f \in \mathsf{KB}} \mathcal{M}(f).$$

Intuition: KB specifies constraints on the world. $\mathcal{M}(\mathsf{KB})$ is the set of all worlds satisfying those constraints.

Semantics: entailment, contradiction, contingency

Definition: entailment—

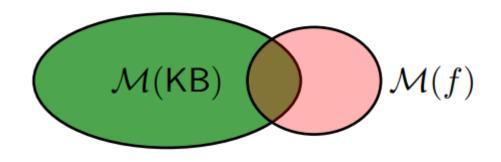
 $\begin{array}{l} \mathsf{KB} \text{ entails } f \text{ (written } \mathsf{KB} \models f \text{) iff} \\ \mathcal{M}(\mathsf{KB}) \subseteq \mathcal{M}(f). \end{array}$

Definition: contradiction—

 $\mathsf{KB} \text{ contradicts } f \text{ iff } \mathcal{M}(\mathsf{KB}) \cap \mathcal{M}(f) = \emptyset.$

Proposition: contradiction and entailment KB contradicts f iff KB entails $\neg f$.

Contingency



Intuition: f adds non-trivial information to KB

 $\emptyset \subsetneq \mathcal{M}(\mathsf{KB}) \cap \mathcal{M}(f) \subsetneq \mathcal{M}(\mathsf{KB})$

Semantics: Ask/Tell

$$\mathsf{Ask}[f] \longrightarrow \mathsf{KB} \longrightarrow ?$$

Ask: Is it raining?

Ask[Rain]

 $\mathsf{Tell}[f] \longrightarrow \mathsf{KB} \longrightarrow ?$

Tell: It is raining.

Tell[Rain]

Possible responses:

- Yes: entailment (KB $\models f$)
- No: contradiction (KB $\models \neg f$)
- I don't know: contingent

Possible responses:

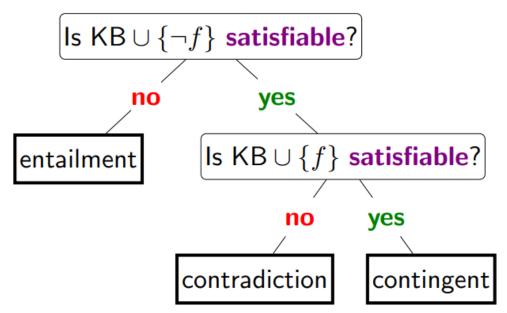
- Already knew that
- Don't believe that
- Learned something new (update KB)

Semantics: satisfiability

Definition: satisfiability-

A knowledge base KB is **satisfiable** if $\mathcal{M}(KB) \neq \emptyset$.

Reduce Ask[f] and Tell[f] to satisfiability:

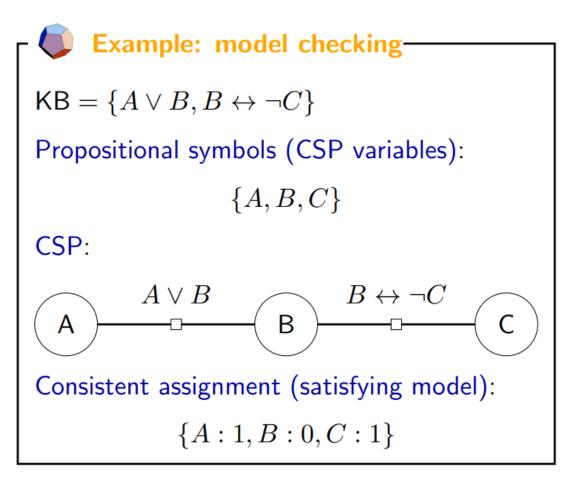


Semantics: model checking

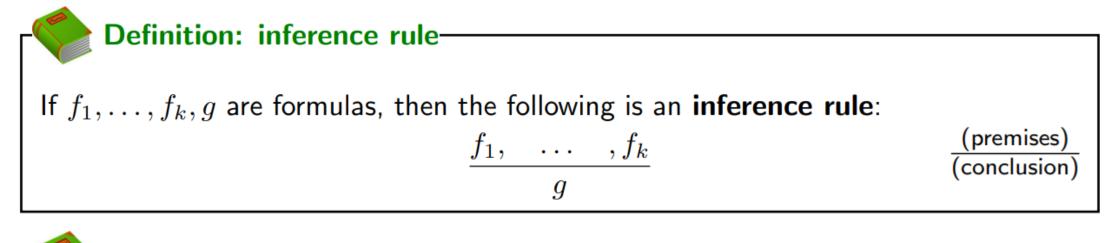
propositional symbol	\Rightarrow	variable
formula	\Rightarrow	constraint
model	\Leftarrow	assignment

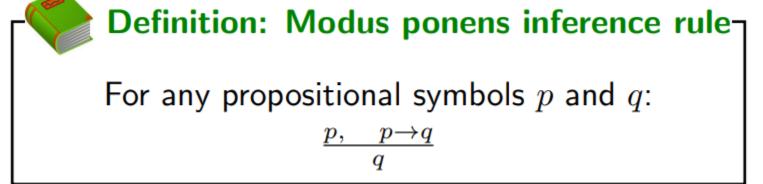
Input: knowledge base KB

Output: exists satisfying model $(\mathcal{M}(KB) \neq \emptyset)$?



Inference rules





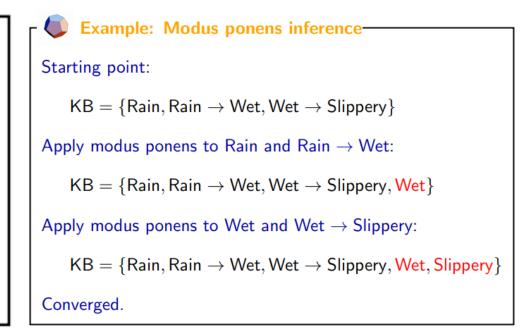
Inference algorithm

Algorithm: forward inference-

Input: set of inference rules Rules.

Repeat until no changes to KB:

Choose set of formulas $f_1, \ldots, f_k \in KB$. If matching rule $\frac{f_1, \ldots, f_k}{g}$ exists: Add g to KB.

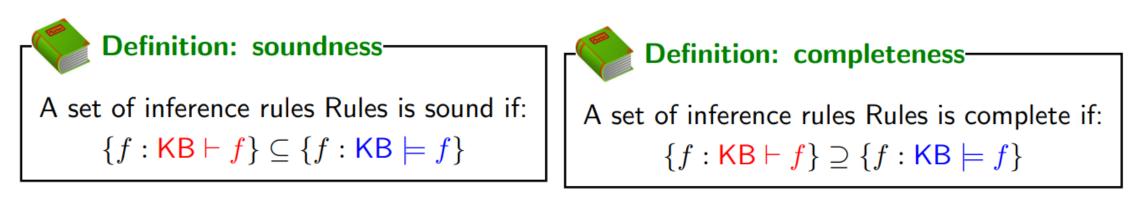


Definition: derivation-

KB derives/proves f (KB \vdash f) iff f eventually gets added to KB.

Inference: soundness and completeness

- Soundness: nothing but the truth
- Completeness: whole truth



Semantics

Syntax:

Interpretation defines entailed/true formulas: $KB \models f$ Inference rules derive formulas: $KB \vdash f$