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DP, UCS, A*



Course plan

Reflex

Search problems

Markov decision processes

Adversarial games

States

Constraint satisfaction problems

Markov networks

Bayesian networks

Variables Logic

”Low-level intelligence” ”High-level intelligence”

Machine learning
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What are the “ingredients” for a well-defined search  
problem?



End



Tree search algorithms

Legend: b actions/state, solution depth d, maximum depth D

Algorithm Action costs Space Time

Backtracking any O(D) O(bD)

DFS zero O(D) O(bD)

BFS constant � 0 O(bd) O(bd)

DFS-ID constant � 0 O(d) O(bd)

• Always exponential time

• Avoid exponential space with DFS-ID
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Section Problem
There exists N cities, labeled from 1 to N.

There are one-way roads connecting some pairs of cities. The  
road connecting city i and city j takes c(i,j) time to traverse.
However, one can only travel from a city with smaller label to  
a city with larger label (each road is one-directional).

From city 1, we want to travel to city N. What is the  shortest 
time required to make this trip, given the constraint  that we 
should visit more odd-labeled cities than even labeled  
cities?



Example

1. What is the shortest  
path (without constraint)?

2. What is the shortest  
path under the given  
constraint (visit more  
odd than even cities)?
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Example

[C1, C2, C4, C5] has cost 14  
but visits equal number of  
odd and even cities.

Best path is [C1, C3, C4, C5]  
with cost 16.
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State Representation



How would you represent a state for this problem?



State Representation

We need to know where we are currently at: current_city

We need to know how many odd and even cities we have  
visited thus far: #odd, #even

State Representation: (current_city, #odd, #even)  

Total number of states: O(N3)



Can We Do Better?

Check if all the information is really required

Instead of storing #odd and #even, we can store #odd -
#even directly; this still allows us to check whether #odd -
#even > 0 at (N, #odd, #even)

(current_city, #odd - #even) → O(N2) states
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Precise Formulation of Problem



Which algorithms can you use to solve this problem?
Any pros and cons?



Solving the Problem

Since we are computing shortest path, which is some form  
of optimization, we consider DP and UCS.

Recall:

● DP can handle negative edges but works only on DAGs
● UCS works on general graphs, but cannot handle  

negative edges
➢ Which one works for our problem?



Solving the Problem

Since we are computing shortest path, which is some form  
of optimization, we consider DP and UCS.

Recall:

● DP can handle negative edges but works only on DAGs
● UCS works on general graphs, but cannot handle  

negative edges

Since we have a DAG and all edges are positive, both work!



Solving the Problem: Dynamic Programming

If s has no successors, we set it as undefined



Simulation of DP
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Simulation of DP
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Simulation of DP
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Simulation of DP
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Simulation of DP
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Simulation of DP
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Simulation of DP
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Simulation of DP
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Simulation of DP
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Simulation of DP
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From depth to breadth first search

Our earlier DP algorithm: improved exhaustive search

• Go down the tree by taking actions

• Use FutureCost to re-use computation

Up next: improved breadth first search

• Expand states close to the start (breadth)

• Use PastCost to re-use computation
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High-level strategy

Frontier

Explored

Unexplored

• Explored: states we’ve found the optimal path to

• Frontier: states we’ve seen, still figuring out how to get there cheaply

• Unexplored: states we haven’t seen
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Solving the Problem: Uniform Cost Search



Simulation of UCS
Explored:
(C1, 1) : 0
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Simulation of UCS
Explored:  
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Simulation of UCS
Explored:  
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Simulation of UCS
Explored:  
(C1, 1) : 0
(C3, 2) : 3
(C2, 0) : 5
(C3, 1): 6

Frontier:  
(C4, -1) : 7
(C4, 1) : 9
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Simulation of UCS
Explored:  
(C1, 1) : 0
(C3, 2) : 3
(C2, 0) : 5
(C3, 1) : 6
(C4, -1) : 7

Frontier:  
(C4, 1) : 9
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(C5, 0) : 14

(C1, 1)

(C2, 0)

(C3, 1)

(C3, 2)

(C4,-1)

(C4, 0)

(C4, 1)

(C5, 0)

(C5, 1)

(C5, 2)

5

3

1

2

6

6

7

7

7



Simulation of UCS
Explored:  
(C1, 1) : 0
(C3, 2) : 3
(C2, 0) : 5
(C3, 1) : 6
(C4, -1) : 7
(C4, 1) : 9

Frontier:  
(C4, 0) : 12
(C5, 0) : 14
(C5, 2) : 16
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Simulation of UCS
Explored:  
(C1, 1) : 0
(C3, 2) : 3
(C2, 0) : 5
(C3, 1) : 6
(C4, -1) : 7
(C4, 1) : 9
(C4, 0) : 12

Frontier:  
(C5, 0) : 14
(C5, 2) : 16
(C5, 1) : 19

(C1, 1)

(C2, 0)

(C3, 1)

(C3, 2)

(C4,-1)

(C4, 0)

(C4, 1)

(C5, 0)

(C5, 1)

(C5, 2)

5

3

1

2

6

6

7

7

7



Simulation of UCS
Explored:  
(C1, 1) : 0
(C3, 2) : 3
(C2, 0) : 5
(C3, 1) : 6
(C4, -1) : 7
(C4, 1) : 9
(C4, 0) : 12
(C5, 0) : 14

Frontier:  
(C5, 2) : 16
(C5, 1) : 19
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Simulation of UCS
Explored:  
(C1, 1) : 0
(C3, 2) : 3
(C2, 0) : 5
(C3, 1) : 6
(C4, -1) : 7
(C4, 1) : 9
(C4, 0) : 12
(C5, 0) : 14
(C5, 2) : 16

Frontier:  
(C5, 1) : 19

STOP!
(Since we found  
C5 with
#odd-#even > 0)
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Comparison between DP and UCS

C1 C2

C3
C4

C52
1

43

N total states, n of which are closer than goal state
Runtime of DP is O(N)  

Runtime of UCS is O(n log n)
Example:
Start state C1, end state C5

-DP explores O(N) states.
-UCS will explore {C1, C2, C5} only.  
C3 will be in the frontier and C4 will  
be unexplored.



DP cannot handle cycles

Shortest path is [C1, C3,
C2, C5] with cost 13.

Hard to define subproblems  
in undirected or cyclic  
graphs.
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UCS cannot handle negative edge weights

Best path is
[C1,C2,C3,C4,C5] with
cost of 8, but UCS will  
output [C1,C3,C4,C5] with  
cost of 13 because C3 is  
marked as ‘explored’  
before C2.
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Back to our section problem,
can we do the search faster than UCS?



Use A*!
https://qiao.github.io/PathFinding.js/visual/

https://qiao.github.io/PathFinding.js/visual/

