
CS221 Section 3: Search
DP, UCS, A*

Course plan

Reflex

Search problems

Markov decision processes

Adversarial games

States

Constraint satisfaction problems

Markov networks

Bayesian networks

Variables Logic

”Low-level intelligence” ”High-level intelligence”

Machine learning

CS221 2

What are the “ingredients” for a well-defined search
problem?

End

Tree search algorithms

Legend: b actions/state, solution depth d, maximum depth D

Algorithm Action costs Space Time

Backtracking any O(D) O(bD)

DFS zero O(D) O(bD)

BFS constant � 0 O(bd) O(bd)

DFS-ID constant � 0 O(d) O(bd)

• Always exponential time

• Avoid exponential space with DFS-ID

CS221 50

Section Problem
There exists N cities, labeled from 1 to N.

There are one-way roads connecting some pairs of cities. The
road connecting city i and city j takes c(i,j) time to traverse.
However, one can only travel from a city with smaller label to
a city with larger label (each road is one-directional).

From city 1, we want to travel to city N. What is the shortest
time required to make this trip, given the constraint that we
should visit more odd-labeled cities than even labeled
cities?

Example

1. What is the shortest
path (without constraint)?

2. What is the shortest
path under the given
constraint (visit more
odd than even cities)?

C1

C2

C3

C4 C5

2

7

5

3 6

1

Example

[C1, C2, C4, C5] has cost 14
but visits equal number of
odd and even cities.

Best path is [C1, C3, C4, C5]
with cost 16.

C1

C2

C3

C4 C5

2

7

5

3 6

1

State Representation

How would you represent a state for this problem?

State Representation

We need to know where we are currently at: current_city

We need to know how many odd and even cities we have
visited thus far: #odd, #even

State Representation: (current_city, #odd, #even)

Total number of states: O(N3)

Can We Do Better?

Check if all the information is really required

Instead of storing #odd and #even, we can store #odd -
#even directly; this still allows us to check whether #odd -
#even > 0 at (N, #odd, #even)

(current_city, #odd - #even) → O(N2) states

C1

C2

C3

C4 C5

2

7

5

3 6

1

Original Graph State Graph

(C1, 1)

(C2, 0)

(C3, 1)

(C3, 2)

(C4,-1)

(C4, 0)

(C4, 1)

(C5, 0)

(C5, 1)

(C5, 2)

5

3

1

2

6

6

7

7

7

Precise Formulation of Problem

Which algorithms can you use to solve this problem?
Any pros and cons?

Solving the Problem

Since we are computing shortest path, which is some form
of optimization, we consider DP and UCS.

Recall:

● DP can handle negative edges but works only on DAGs
● UCS works on general graphs, but cannot handle

negative edges
➢ Which one works for our problem?

Solving the Problem

Since we are computing shortest path, which is some form
of optimization, we consider DP and UCS.

Recall:

● DP can handle negative edges but works only on DAGs
● UCS works on general graphs, but cannot handle

negative edges

Since we have a DAG and all edges are positive, both work!

Solving the Problem: Dynamic Programming

If s has no successors, we set it as undefined

Simulation of DP

-1 0 1 2 3

C1 - - - - -

C2 - - - - -

C3 - - - - -

C4 - - - - -

C5 - ? - - -

#odd - #even

ci
ty

(C1, 1)

(C2, 0)

(C3, 1)

(C3, 2)

(C4,-1)

(C4, 0)

(C4, 1)

(C5, 0)

(C5, 1)

(C5, 2)

5

3

1

2

6

6

7

7

7

Simulation of DP

-1 0 1 2 3

C1 - - - - -

C2 - - - - -

C3 - - - - -

C4 - - - - -

C5 - ? 0 - -

#odd - #even

ci
ty

(C1, 1)

(C2, 0)

(C3, 1)

(C3, 2)

(C4,-1)

(C4, 0)

(C4, 1)

(C5, 0)

(C5, 1)

(C5, 2)

5

3

1

2

6

6

7

7

7

Simulation of DP

-1 0 1 2 3

C1 - - - - -

C2 - - - - -

C3 - - - - -

C4 - - - - -

C5 - ? 0 0 -

#odd - #even

ci
ty

(C1, 1)

(C2, 0)

(C3, 1)

(C3, 2)

(C4,-1)

(C4, 0)

(C4, 1)

(C5, 0)

(C5, 1)

(C5, 2)

5

3

1

2

6

6

7

7

7

Simulation of DP

-1 0 1 2 3

C1 - - - - -

C2 - - - - -

C3 - - - - -

C4 ? - - - -

C5 - ? 0 0 -

#odd - #even

ci
ty

(C1, 1)

(C2, 0)

(C3, 1)

(C3, 2)

(C4,-1)

(C4, 0)

(C4, 1)

(C5, 0)

(C5, 1)

(C5, 2)

5

3

1

2

6

6

7

7

7

Simulation of DP

-1 0 1 2 3

C1 - - - - -

C2 - - - - -

C3 - - - - -

C4 ? 7 - - -

C5 - ? 0 0 -

#odd - #even

ci
ty

(C1, 1)

(C2, 0)

(C3, 1)

(C3, 2)

(C4,-1)

(C4, 0)

(C4, 1)

(C5, 0)

(C5, 1)

(C5, 2)

5

3

1

2

6

6

7

7

7

Simulation of DP

-1 0 1 2 3

C1 - - - - -

C2 - - - - -

C3 - - - - -

C4 ? 7 7 - -

C5 - ? 0 0 -

#odd - #even

ci
ty

(C1, 1)

(C2, 0)

(C3, 1)

(C3, 2)

(C4,-1)

(C4, 0)

(C4, 1)

(C5, 0)

(C5, 1)

(C5, 2)

5

3

1

2

6

6

7

7

7

Simulation of DP

-1 0 1 2 3

C1 - - - - -

C2 - - - - -

C3 - - 13 - -

C4 ? 7 7 - -

C5 - ? 0 0 -

#odd - #even

ci
ty

(C1, 1)

(C2, 0)

(C3, 1)

(C3, 2)

(C4,-1)

(C4, 0)

(C4, 1)

(C5, 0)

(C5, 1)

(C5, 2)

5

3

1

2

6

6

7

7

7

Simulation of DP

-1 0 1 2 3

C1 - - - - -

C2 - 14 - - -

C3 - - 13 - -

C4 ? 7 7 - -

C5 - ? 0 0 -

#odd - #even

ci
ty

(C1, 1)

(C2, 0)

(C3, 1)

(C3, 2)

(C4,-1)

(C4, 0)

(C4, 1)

(C5, 0)

(C5, 1)

(C5, 2)

5

3

1

2

6

6

7

7

7

Simulation of DP

-1 0 1 2 3

C1 - - - - -

C2 - 14 - - -

C3 - - 13 13 -

C4 ? 7 7 - -

C5 - ? 0 0 -

#odd - #even

ci
ty

(C1, 1)

(C2, 0)

(C3, 1)

(C3, 2)

(C4,-1)

(C4, 0)

(C4, 1)

(C5, 0)

(C5, 1)

(C5, 2)

5

3

1

2

6

6

7

7

7

Simulation of DP

-1 0 1 2 3

C1 - - 16 - -

C2 - 14 - - -

C3 - - 13 13 -

C4 ? 7 7 - -

C5 - ? 0 0 -

#odd - #even

ci
ty

(C1, 1)

(C2, 0)

(C3, 1)

(C3, 2)

(C4,-1)

(C4, 0)

(C4, 1)

(C5, 0)

(C5, 1)

(C5, 2)

5

3

1

2

6

6

7

7

7

From depth to breadth first search

Our earlier DP algorithm: improved exhaustive search

• Go down the tree by taking actions

• Use FutureCost to re-use computation

Up next: improved breadth first search

• Expand states close to the start (breadth)

• Use PastCost to re-use computation

CS221 74

High-level strategy

Frontier

Explored

Unexplored

• Explored: states we’ve found the optimal path to

• Frontier: states we’ve seen, still figuring out how to get there cheaply

• Unexplored: states we haven’t seen

CS221 80

Solving the Problem: Uniform Cost Search

Simulation of UCS
Explored:
(C1, 1) : 0

Frontier:
(C3, 2) : 3
(C2, 0) : 5

(C1, 1)

(C2, 0)

(C3, 1)

(C3, 2)

(C4,-1)

(C4, 0)

(C4, 1)

(C5, 0)

(C5, 1)

(C5, 2)

5

3

1

2

6

6

7

7

7

→ Frontier is a
priority queue.

Simulation of UCS
Explored:
(C1, 1) : 0
(C3, 2) : 3

Frontier:
(C2, 0) : 5
(C4, 1) : 9

(C1, 1)

(C2, 0)

(C3, 1)

(C3, 2)

(C4,-1)

(C4, 0)

(C4, 1)

(C5, 0)

(C5, 1)

(C5, 2)

5

3

1

2

6

6

7

7

7

Simulation of UCS
Explored:
(C1, 1) : 0
(C3, 2) : 3
(C2, 0) : 5

Frontier:
(C3, 1) : 6
(C4, -1) : 7
(C4, 1) : 9

(C1, 1)

(C2, 0)

(C3, 1)

(C3, 2)

(C4,-1)

(C4, 0)

(C4, 1)

(C5, 0)

(C5, 1)

(C5, 2)

5

3

1

2

6

6

7

7

7

Simulation of UCS
Explored:
(C1, 1) : 0
(C3, 2) : 3
(C2, 0) : 5
(C3, 1): 6

Frontier:
(C4, -1) : 7
(C4, 1) : 9
(C4, 0): 12

(C1, 1)

(C2, 0)

(C3, 1)

(C3, 2)

(C4,-1)

(C4, 0)

(C4, 1)

(C5, 0)

(C5, 1)

(C5, 2)

5

3

1

2

6

6

7

7

7

Simulation of UCS
Explored:
(C1, 1) : 0
(C3, 2) : 3
(C2, 0) : 5
(C3, 1) : 6
(C4, -1) : 7

Frontier:
(C4, 1) : 9
(C4, 0) : 12
(C5, 0) : 14

(C1, 1)

(C2, 0)

(C3, 1)

(C3, 2)

(C4,-1)

(C4, 0)

(C4, 1)

(C5, 0)

(C5, 1)

(C5, 2)

5

3

1

2

6

6

7

7

7

Simulation of UCS
Explored:
(C1, 1) : 0
(C3, 2) : 3
(C2, 0) : 5
(C3, 1) : 6
(C4, -1) : 7
(C4, 1) : 9

Frontier:
(C4, 0) : 12
(C5, 0) : 14
(C5, 2) : 16

(C1, 1)

(C2, 0)

(C3, 1)

(C3, 2)

(C4,-1)

(C4, 0)

(C4, 1)

(C5, 0)

(C5, 1)

(C5, 2)

5

3

1

2

6

6

7

7

7

Simulation of UCS
Explored:
(C1, 1) : 0
(C3, 2) : 3
(C2, 0) : 5
(C3, 1) : 6
(C4, -1) : 7
(C4, 1) : 9
(C4, 0) : 12

Frontier:
(C5, 0) : 14
(C5, 2) : 16
(C5, 1) : 19

(C1, 1)

(C2, 0)

(C3, 1)

(C3, 2)

(C4,-1)

(C4, 0)

(C4, 1)

(C5, 0)

(C5, 1)

(C5, 2)

5

3

1

2

6

6

7

7

7

Simulation of UCS
Explored:
(C1, 1) : 0
(C3, 2) : 3
(C2, 0) : 5
(C3, 1) : 6
(C4, -1) : 7
(C4, 1) : 9
(C4, 0) : 12
(C5, 0) : 14

Frontier:
(C5, 2) : 16
(C5, 1) : 19

(C1, 1)

(C2, 0)

(C3, 1)

(C3, 2)

(C4,-1)

(C4, 0)

(C4, 1)

(C5, 0)

(C5, 1)

(C5, 2)

5

3

1

2

6

6

7

7

7

Simulation of UCS
Explored:
(C1, 1) : 0
(C3, 2) : 3
(C2, 0) : 5
(C3, 1) : 6
(C4, -1) : 7
(C4, 1) : 9
(C4, 0) : 12
(C5, 0) : 14
(C5, 2) : 16

Frontier:
(C5, 1) : 19

STOP!
(Since we found
C5 with
#odd-#even > 0)

(C1, 1)

(C2, 0)

(C3, 1)

(C3, 2)

(C4,-1)

(C4, 0)

(C4, 1)

(C5, 0)

(C5, 1)

(C5, 2)

5

3

1

2

6

6

7

7

7

Comparison between DP and UCS

C1 C2

C3
C4

C52
1

43

N total states, n of which are closer than goal state
Runtime of DP is O(N)

Runtime of UCS is O(n log n)
Example:
Start state C1, end state C5

-DP explores O(N) states.
-UCS will explore {C1, C2, C5} only.
C3 will be in the frontier and C4 will
be unexplored.

DP cannot handle cycles

Shortest path is [C1, C3,
C2, C5] with cost 13.

Hard to define subproblems
in undirected or cyclic
graphs.

C1

C2

C3

C4 C5

2

7

5

3 6

1

UCS cannot handle negative edge weights

Best path is
[C1,C2,C3,C4,C5] with
cost of 8, but UCS will
output [C1,C3,C4,C5] with
cost of 13 because C3 is
marked as ‘explored’
before C2.

C1

C2

C3

C4 C5

7

10 2

5 1

-10

Back to our section problem,
can we do the search faster than UCS?

Use A*!
https://qiao.github.io/PathFinding.js/visual/

https://qiao.github.io/PathFinding.js/visual/

