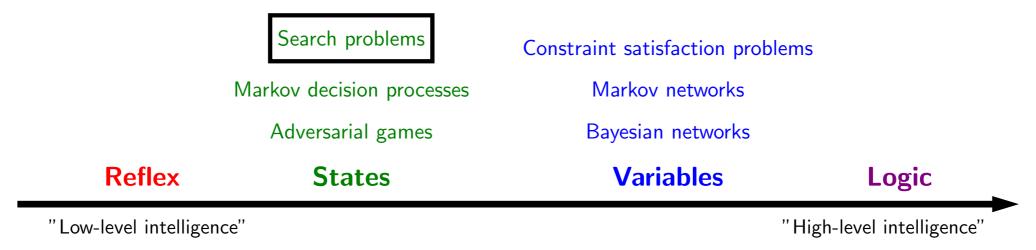
CS221 Section 3: Search

DP, UCS, A*

Course plan



Machine learning

CS221

What are the "ingredients" for a well-defined search problem?

Definition: search problem-

- $s_{
 m start}$: starting state
- Actions(s): possible actions
- Cost(s, a): action cost
- $\operatorname{Succ}(s,a)$: successor
- Is $\mathbf{End}(s)$: found solution?

Tree search algorithms

Legend: b actions/state, solution depth d, maximum depth D

Algorithm	Action costs	Space	Time
Backtracking	any	O(D)	$O(b^D)$
DFS	zero	O(D)	$O(b^D)$
BFS	${\rm constant} \geq 0$	$O(b^d)$	$O(b^d)$
DFS-ID	$constant \geq 0$	O(d)	$O(b^d)$

- Always exponential time
- Avoid exponential space with DFS-ID

CS221 50

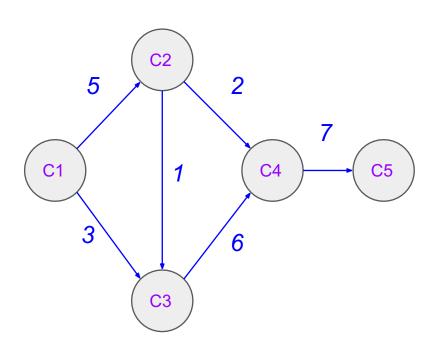
Section Problem

There exists *N* cities, labeled from 1 to *N*.

There are one-way roads connecting some pairs of cities. The road connecting city *i* and city *j* takes *c(i,j)* time to traverse. However, one can **only travel from a city with smaller label to a city with larger label** (each road is one-directional).

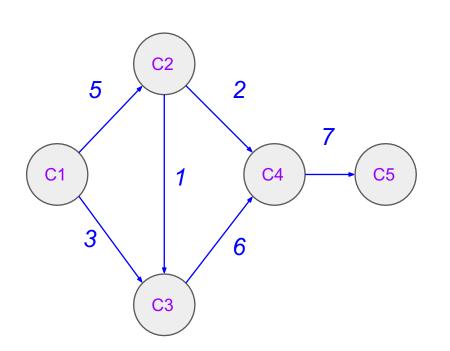
From city 1, we want to travel to city N. What is the shortest time required to make this trip, given the constraint that we should visit more odd-labeled cities than even labeled cities?

Example



- 1. What is the shortest path (without constraint)?
- 2. What is the shortest path under the given constraint (visit more odd than even cities)?

Example



[C1, C2, C4, C5] has cost 14 but visits equal number of odd and even cities.

Best path is [C1, C3, C4, C5] with cost 16.

State Representation

Key idea: state-

A **state** is a summary of all the past actions sufficient to choose future actions **optimally**.

How would you represent a state for this problem?

State Representation

We need to know where we are currently at: current_city

We need to know how many odd and even cities we have visited thus far: **#odd**, **#even**

State Representation: (current_city, #odd, #even)

Total number of states: $O(N^3)$

Can We Do Better?

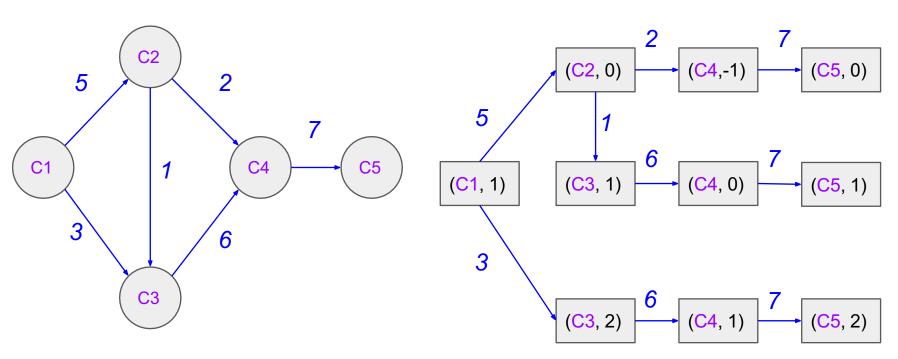
Check if all the information is really required

Instead of storing **#odd** and **#even**, we can store **#odd** - **#even** directly; this still allows us to check whether **#odd** - **#even** > 0 at (N, **#odd**, **#even**)

(current_city, #odd - #even) \rightarrow O(N²) states

Original Graph

State Graph



State s = (i, d) (current city, #odd-#even)

Precise Formulation of Problem

State s := (i, d) (current city, #odd-#even)

 $E := \{(i, j) \mid \exists \text{ road from i to j}\}\$

 $\mathsf{Actions}(s) := \{ move(j) \mid (i,j) \in E \}$

Cost(s, move(j)) := c(i, j)

 $\operatorname{Succ}(s,a) := egin{cases} (j,d+1) & j \text{ odd} \ (j,d-1) & j \text{ even} \end{cases}$

Start := (1,1)

isEnd(s) := i = N and d > 0

Which algorithms can you use to solve this problem? Any pros and cons?

Solving the Problem

Since we are computing shortest path, which is some form of optimization, we consider **DP** and **UCS**.

Recall:

- DP can handle negative edges but works only on DAGs
- UCS works on general graphs, but cannot handle negative edges
- > Which one works for our problem?

Solving the Problem

Since we are computing shortest path, which is some form of optimization, we consider **DP** and **UCS**.

Recall:

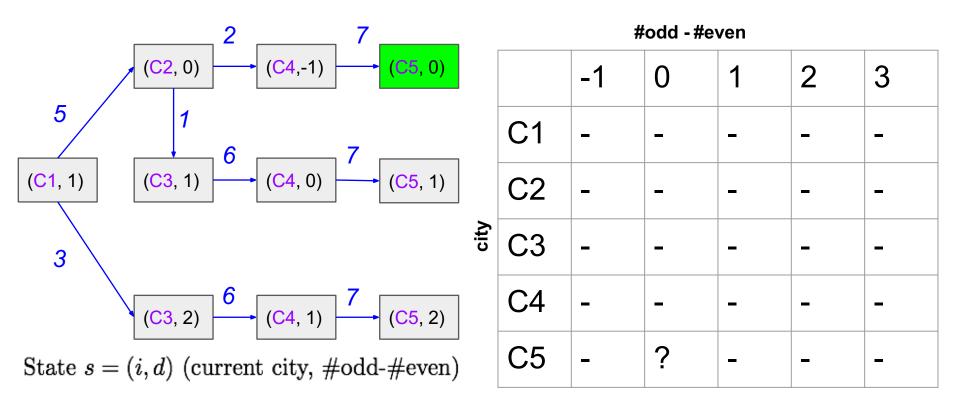
- DP can handle negative edges but works only on DAGs
- UCS works on general graphs, but cannot handle negative edges

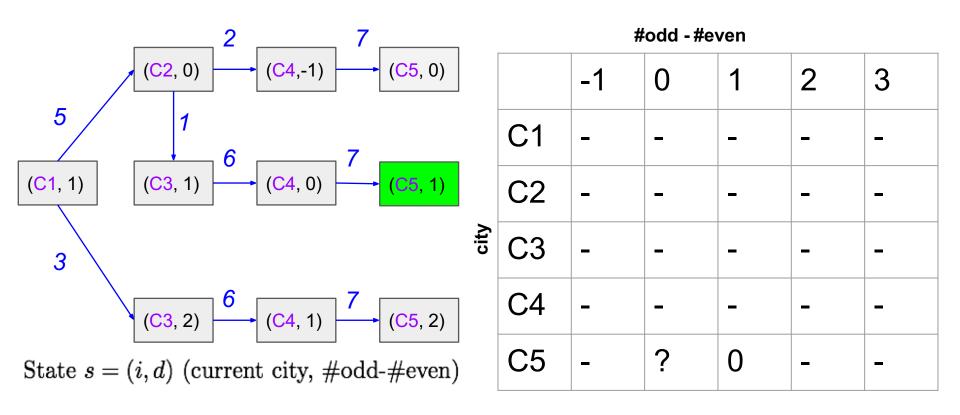
Since we have a **DAG** and all edges are positive, both work!

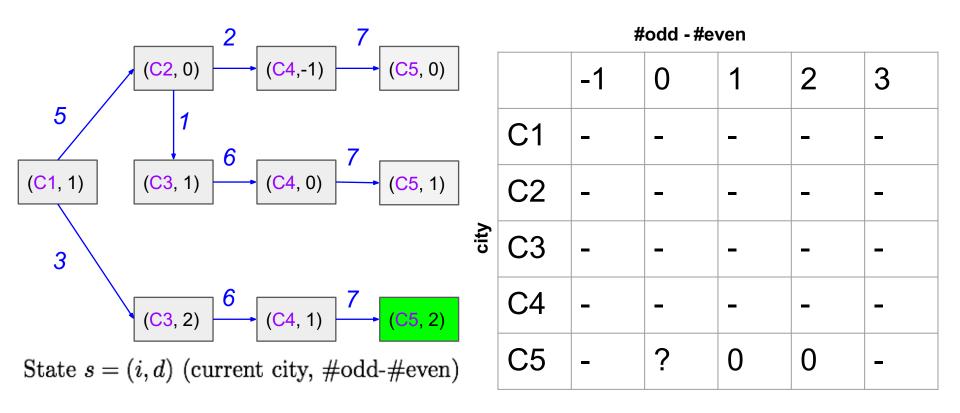
Solving the Problem: Dynamic Programming

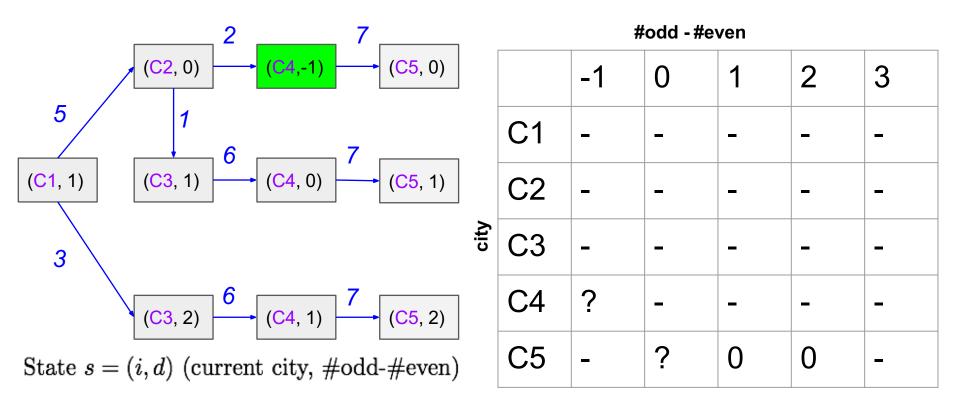
$$\mathsf{FutureCost}(s) = \begin{cases} 0 & \text{if } \mathsf{isEnd}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \text{otherwise} \end{cases}$$

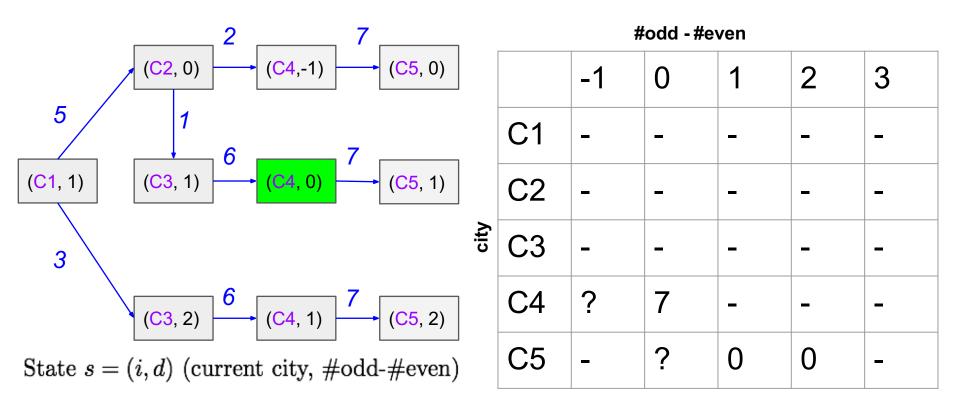
If s has no successors, we set it as undefined

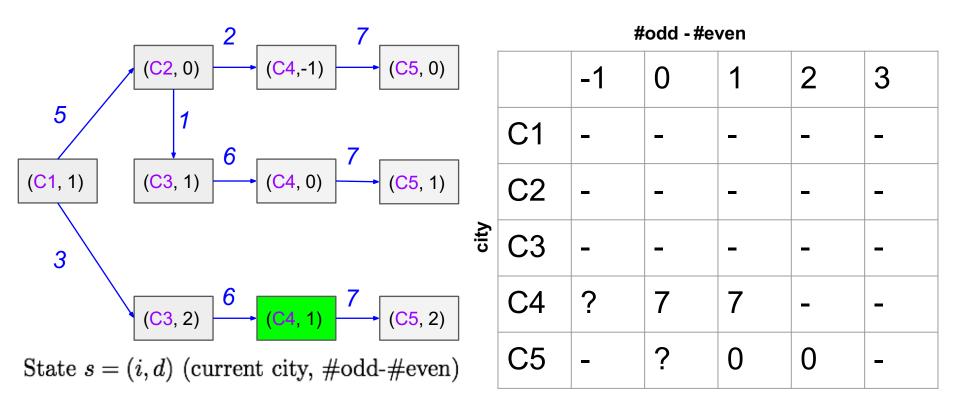


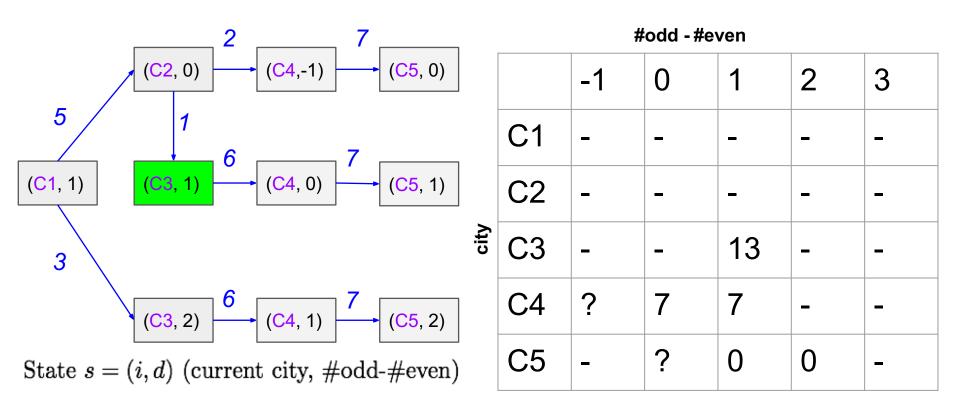


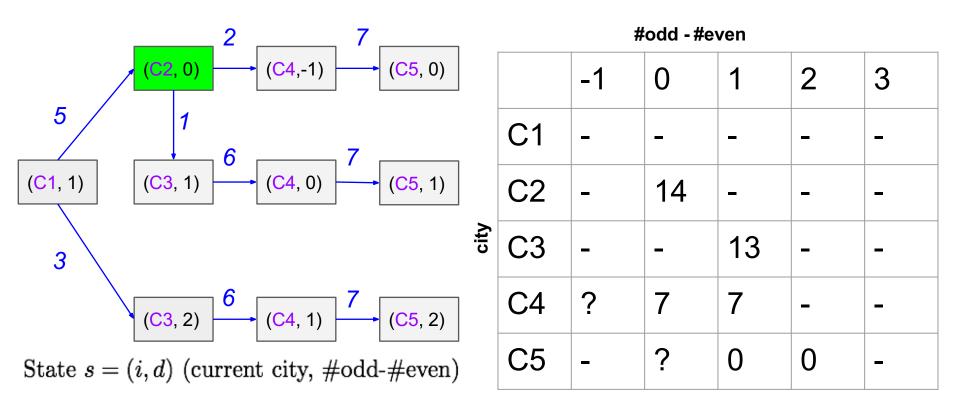


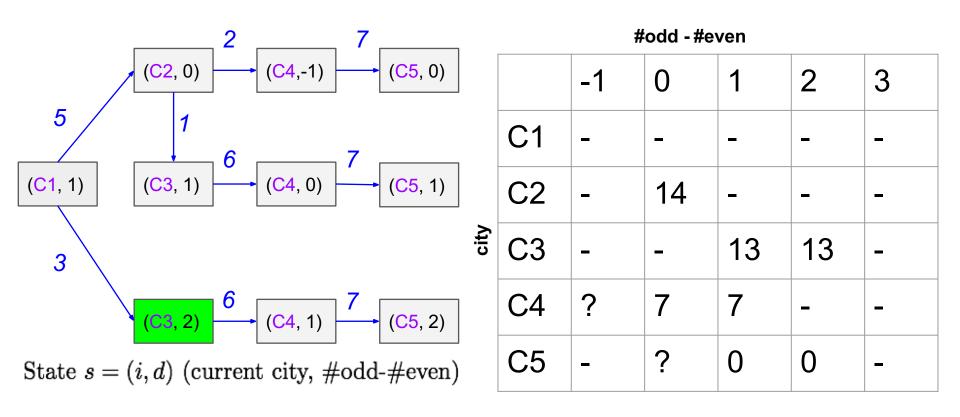


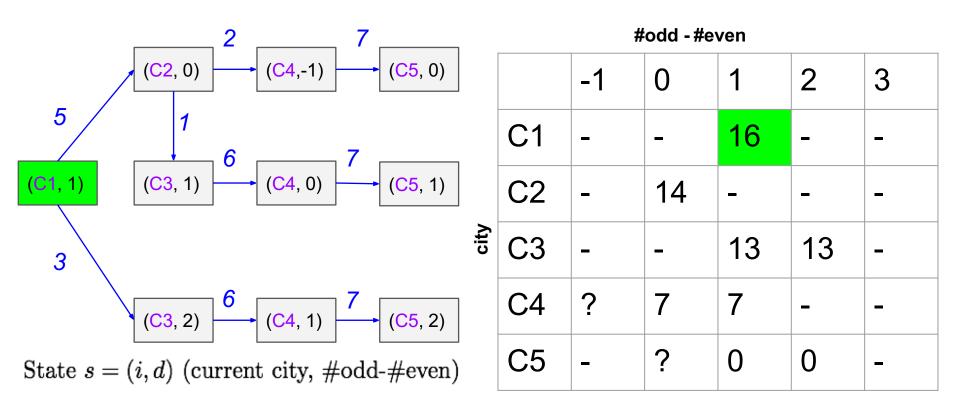












From depth to breadth first search

Our earlier DP algorithm: improved exhaustive search

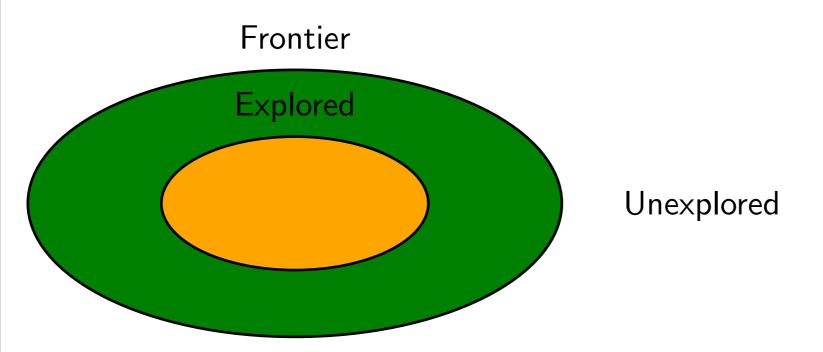
- Go down the tree by taking actions
- Use FutureCost to re-use computation

Up next: improved breadth first search

- Expand states close to the start (breadth)
- Use PastCost to re-use computation

CS221

High-level strategy

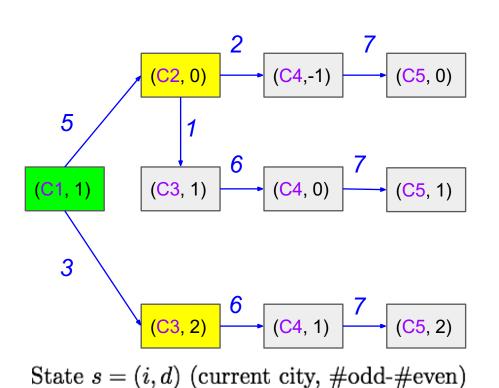


- Explored: states we've found the optimal path to
- Frontier: states we've seen, still figuring out how to get there cheaply
- Unexplored: states we haven't seen

CS221

Solving the Problem: Uniform Cost Search

```
Algorithm: uniform cost search [Dijkstra, 1956]
Add s_{\text{start}} to frontier (priority queue)
Repeat until frontier is empty:
   Remove s with smallest priority p from frontier
   If \operatorname{IsEnd}(s): return solution
   Add s to explored
   For each action a \in Actions(s):
       Get successor s' \leftarrow \operatorname{Succ}(s, a)
       If s' already in explored: continue
       Update frontier with s' and priority p + \operatorname{Cost}(s, a)
```



Explored:

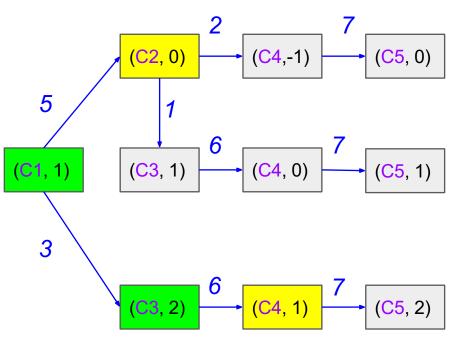
(C1, 1):0

Frontier:

(C3, 2):3

(C2, 0):5

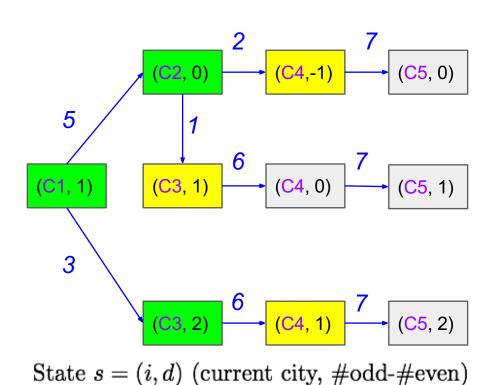
→ Frontier is a priority queue.



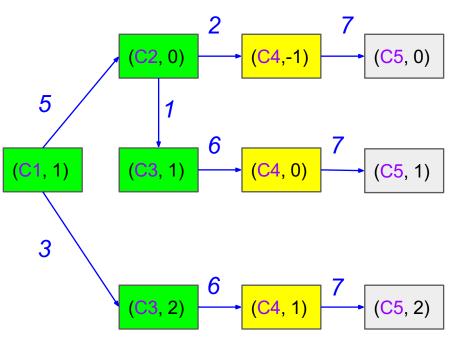
Explored: Frontier:

(C1, 1): 0 (C2, 0): 5 (C3, 2): 3 (C4, 1): 9

State s = (i, d) (current city, #odd-#even)

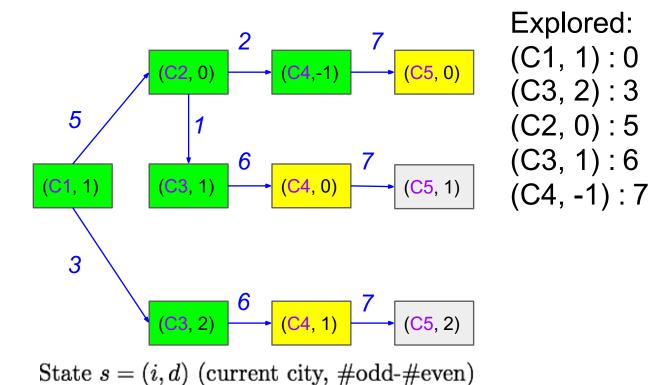


Explored: Frontier: (C1, 1): 0 (C3, 1): 6 (C3, 2): 3 (C4, -1): 7 (C2, 0): 5 (C4, 1): 9



State s = (i, d) (current city, #odd-#even)

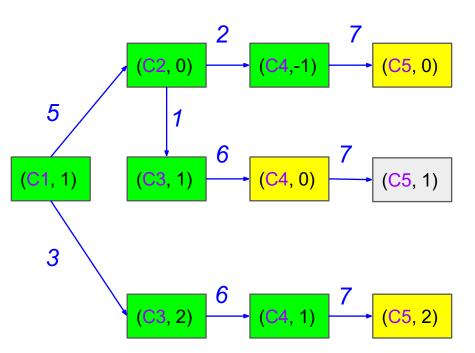
Explored: Frontier: (C1, 1): 0 (C4, -1): 7 (C3, 2): 3 (C4, 1): 9 (C2, 0): 5 (C4, 0): 12 (C3, 1): 6



Frontier: (C4, 1): 9

(C4, 0): 12

(C5, 0): 14

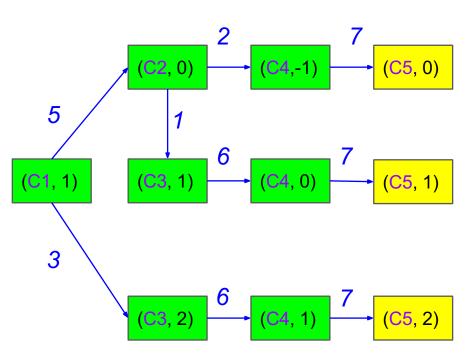


State s = (i, d) (current city, #odd-#even)

Explored: Frontier: (C1, 1): 0 (C4, 0): 12 (C3, 2): 3 (C5, 0): 14 (C2, 0): 5 (C5, 2): 16 (C3, 1): 6

(C4, -1): 7

(C4, 1):9



State s = (i, d) (current city, #odd-#even)

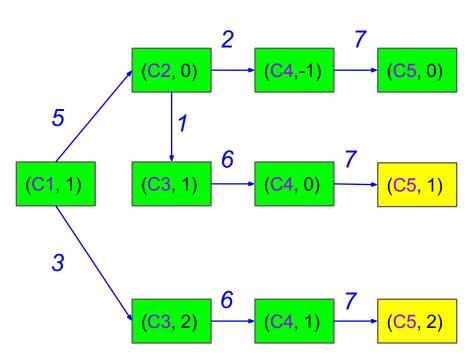
Explored: Frontier: (C1, 1): 0 (C5, 0): 14 (C3, 2): 3 (C5, 2): 16 (C2, 0): 5 (C5, 1): 19

(C3, 1):6

(C4, -1): 7

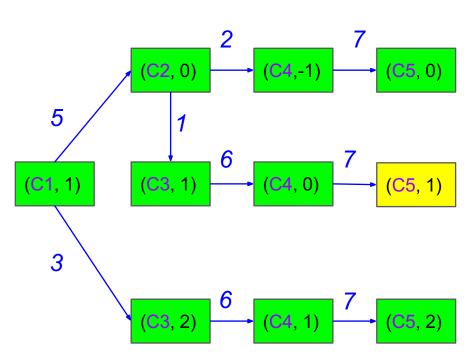
(C4, 1):9

(C4, 0): 12



State s = (i, d) (current city, #odd-#even)

Explored: (C1, 1):0(C3, 2):3(C2, 0):5(C3, 1):6(C4, -1): 7(C4, 1):9(C4, 0): 12(C5, 0): 14 Frontier: (C5, 2) : 16 (C5, 1) : 19



State s = (i, d) (current city, #odd-#even)

Explored: Frontier: (C1, 1): 0 (C5, 1): 19 (C3, 2): 3

(C2, 0):5

(C3, 1):6

(C4, -1): 7

(C4, 1):9

(C4, 0): 12

(C5, 0): 14

(C5, 2): 16

STOP!(Since we found

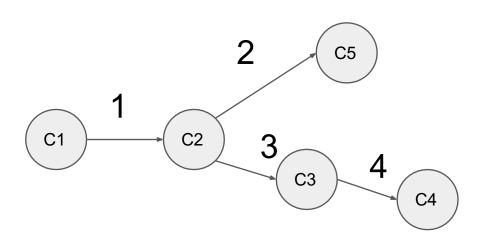
C5 with #odd-#even > 0)

Comparison between DP and UCS

N total states, n of which are closer than goal state

Runtime of DP is O(N)

Runtime of UCS is O(n log n)

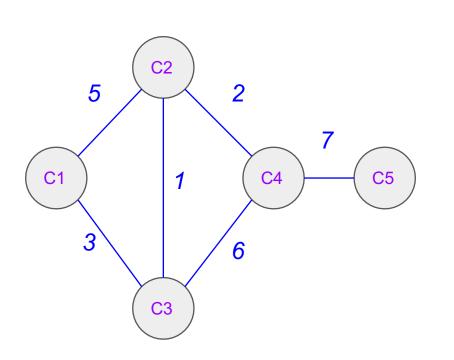


Example:

Start state C1, end state C5

- -DP explores O(N) states.
- -UCS will explore {C1, C2, C5} only. C3 will be in the frontier and C4 will be unexplored.

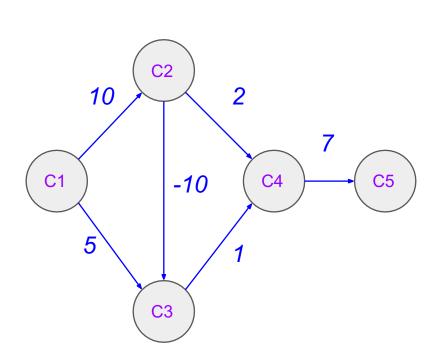
DP cannot handle cycles



Shortest path is [C1, C3, C2, C5] with cost 13.

Hard to define subproblems in undirected or cyclic graphs.

UCS cannot handle negative edge weights

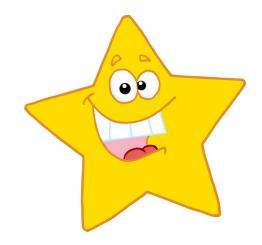


Best path is [C1,C2,C3,C4,C5] with cost of 8, but UCS will output [C1,C3,C4,C5] with cost of 13 because C3 is

marked as 'explored'

before C2.

Back to our section problem, can we do the search faster than UCS?



Use A*!

https://qiao.github.io/PathFinding.js/visual/