CS221 Section 3: Search

DP, UCS, A*
Course plan

- Search problems
 - Markov decision processes
 - Adversarial games

- Constraint satisfaction problems
 - Markov networks
 - Bayesian networks

- States
- Variables
- Logic

"Low-level intelligence" "High-level intelligence"

Machine learning
What are the “ingredients” for a well-defined search problem?
Definition: search problem

- s_{start}: starting state
- $\text{Actions}(s)$: possible actions
- $\text{Cost}(s, a)$: action cost
- $\text{Succ}(s, a)$: successor
- $\text{Is End}(s)$: found solution?
Tree search algorithms

Legend: \(b \) actions/state, solution depth \(d \), maximum depth \(D \)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Action costs</th>
<th>Space</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backtracking</td>
<td>any</td>
<td>(O(D))</td>
<td>(O(b^D))</td>
</tr>
<tr>
<td>DFS</td>
<td>zero</td>
<td>(O(D))</td>
<td>(O(b^D))</td>
</tr>
<tr>
<td>BFS</td>
<td>constant (\geq 0)</td>
<td>(O(b^d))</td>
<td>(O(b^d))</td>
</tr>
<tr>
<td>DFS-ID</td>
<td>constant (\geq 0)</td>
<td>(O(d))</td>
<td>(O(b^d))</td>
</tr>
</tbody>
</table>

- Always exponential time
- Avoid exponential space with DFS-ID
There exists N cities, labeled from 1 to N.

There are one-way roads connecting some pairs of cities. The road connecting city i and city j takes $c(i,j)$ time to traverse. However, one can only travel from a city with smaller label to a city with larger label (each road is one-directional).

From city 1, we want to travel to city N. What is the shortest time required to make this trip, given the constraint that we should visit more odd-labeled cities than even labeled cities?
1. What is the shortest path (without constraint)?
2. What is the shortest path under the given constraint (visit more odd than even cities)?
Example

[C1, C2, C4, C5] has cost 14 but visits equal number of odd and even cities.

Best path is [C1, C3, C4, C5] with cost 16.
State Representation

Key idea: state

A state is a summary of all the past actions sufficient to choose future actions optimally.
How would you represent a state for this problem?
State Representation

We need to know where we are currently at: current_city

We need to know how many odd and even cities we have visited thus far: #odd, #even

State Representation: (current_city, #odd, #even)

Total number of states: $O(N^3)$
Can We Do Better?

Check if all the information is really required

Instead of storing \#odd and \#even, we can store \#odd - \#even directly; this still allows us to check whether \#odd - \#even > 0 at \((N, \#odd, \#even)\)

\((\text{current_city}, \#odd - \#even) \rightarrow O(N^2)\) states
Original Graph

State Graph

State $s = (i, d)$ (current city, #odd-#even)
Precise Formulation of Problem

State $s := (i, d)$ (current city, #odd-$\#$even)

$E := \{(i, j) \mid \exists\ \text{road from } i \text{ to } j\}$

$\text{Actions}(s) := \{move(j) \mid (i, j) \in E\}$

$\text{Cost}(s, move(j)) := c(i, j)$

$\text{Succ}(s, a) := \begin{cases}
(j, d + 1) & \text{if } j \text{ odd} \\
(j, d - 1) & \text{if } j \text{ even}
\end{cases}$

$\text{Start} := (1, 1)$

$\text{isEnd}(s) := i = N \text{ and } d > 0$
Which algorithms can you use to solve this problem?
Any pros and cons?
Solving the Problem

Since we are computing shortest path, which is some form of optimization, we consider **DP** and **UCS**.

Recall:

- **DP** can handle negative edges but works only on DAGs
- **UCS** works on general graphs, but cannot handle negative edges

> Which one works for our problem?
Solving the Problem

Since we are computing shortest path, which is some form of optimization, we consider **DP** and **UCS**.

Recall:

- **DP** can handle negative edges but works only on DAGs
- **UCS** works on general graphs, but cannot handle negative edges

Since we have a **DAG** and all edges are positive, both work!
Solving the Problem: Dynamic Programming

\[\text{FutureCost}(s) = \begin{cases}
0 & \text{if isEnd}(s) \\
\min_{a \in \text{Actions}(s)} [\text{Cost}(s, a) + \text{FutureCost}(\text{Succ}(s, a))] & \text{otherwise}
\end{cases} \]

If \(s \) has no successors, we set it as \textit{undefined}.
Simulation of DP

State $s = (i, d)$ (current city, #odd-#even)

<table>
<thead>
<tr>
<th>city</th>
<th>#odd - #even</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>-</td>
</tr>
<tr>
<td>C2</td>
<td>-</td>
</tr>
<tr>
<td>C3</td>
<td>-</td>
</tr>
<tr>
<td>C4</td>
<td>-</td>
</tr>
<tr>
<td>C5</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Simulation of DP

State $s = (i, d)$ (current city, #odd-#even)

<table>
<thead>
<tr>
<th>city</th>
<th>#odd - #even</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>-</td>
</tr>
<tr>
<td>C2</td>
<td>-</td>
</tr>
<tr>
<td>C3</td>
<td>-</td>
</tr>
<tr>
<td>C4</td>
<td>-</td>
</tr>
<tr>
<td>C5</td>
<td>-</td>
</tr>
</tbody>
</table>
Simulation of DP

State $s = (i, d)$ (current city, #odd-#even)
Simulation of DP

State $s = (i, d)$ (current city, #odd-#even)

<table>
<thead>
<tr>
<th>city</th>
<th>#odd - #even</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>- - - - - -</td>
</tr>
<tr>
<td>C2</td>
<td>- - - - - -</td>
</tr>
<tr>
<td>C3</td>
<td>- - - - - -</td>
</tr>
<tr>
<td>C4</td>
<td>? - - - - -</td>
</tr>
<tr>
<td>C5</td>
<td>- ? 0 0 -</td>
</tr>
</tbody>
</table>
Simulation of DP

State $s = (i, d)$ (current city, #odd-#even)

<table>
<thead>
<tr>
<th>city</th>
<th>#odd - #even</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>- -</td>
</tr>
<tr>
<td>C2</td>
<td>- -</td>
</tr>
<tr>
<td>C3</td>
<td>- -</td>
</tr>
<tr>
<td>C4</td>
<td>? 7</td>
</tr>
<tr>
<td>C5</td>
<td>- ?</td>
</tr>
</tbody>
</table>

-1 0 1 2 3
Simulation of DP

State $s = (i, d)$ (current city, #odd-#even)

<table>
<thead>
<tr>
<th>city</th>
<th>#odd - #even</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>C1</td>
<td>-</td>
</tr>
<tr>
<td>C2</td>
<td>-</td>
</tr>
<tr>
<td>C3</td>
<td>-</td>
</tr>
<tr>
<td>C4</td>
<td>?</td>
</tr>
<tr>
<td>C5</td>
<td>-</td>
</tr>
</tbody>
</table>
Simulation of DP

State $s = (i, d)$ (current city, #odd - #even)

<table>
<thead>
<tr>
<th>city</th>
<th>#odd - #even</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>C1</td>
<td>-</td>
</tr>
<tr>
<td>C2</td>
<td>-</td>
</tr>
<tr>
<td>C3</td>
<td>-</td>
</tr>
<tr>
<td>C4</td>
<td>?</td>
</tr>
<tr>
<td>C5</td>
<td>-</td>
</tr>
</tbody>
</table>
Simulation of DP

State $s = (i, d)$ (current city, #odd-#even)

<table>
<thead>
<tr>
<th>City</th>
<th>#odd - #even</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>- - - - - - -</td>
</tr>
<tr>
<td>C2</td>
<td>- 14 - - - -</td>
</tr>
<tr>
<td>C3</td>
<td>- - 13 - - -</td>
</tr>
<tr>
<td>C4</td>
<td>? 7 7 - - -</td>
</tr>
<tr>
<td>C5</td>
<td>- ? 0 0 - -</td>
</tr>
</tbody>
</table>
Simulation of DP

State $s = (i, d)$ (current city, #odd-#even)

<table>
<thead>
<tr>
<th>city</th>
<th>#odd</th>
<th>#even</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C2</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>C3</td>
<td>-</td>
<td>13</td>
</tr>
<tr>
<td>C4</td>
<td>?</td>
<td>7</td>
</tr>
<tr>
<td>C5</td>
<td>-</td>
<td>?</td>
</tr>
</tbody>
</table>

-1 0 1 2 3
Simulation of DP

State $s = (i, d)$ (current city, #odd-#even)

<table>
<thead>
<tr>
<th>city</th>
<th>#odd - #even</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>-</td>
</tr>
<tr>
<td>C2</td>
<td>-</td>
</tr>
<tr>
<td>C3</td>
<td>-</td>
</tr>
<tr>
<td>C4</td>
<td>?</td>
</tr>
<tr>
<td>C5</td>
<td>-</td>
</tr>
</tbody>
</table>
From depth to breadth first search

Our earlier DP algorithm: improved exhaustive search

- Go down the tree by taking actions
- Use FutureCost to re-use computation

Up next: improved breadth first search

- Expand states close to the start (breadth)
- Use PastCost to re-use computation
High-level strategy

- **Explored**: states we’ve found the optimal path to
- **Frontier**: states we’ve seen, still figuring out how to get there cheaply
- **Unexplored**: states we haven’t seen
Solving the Problem: Uniform Cost Search

Algorithm: uniform cost search [Dijkstra, 1956]

1. Add s_{start} to frontier (priority queue)
2. Repeat until frontier is empty:
 - Remove s with smallest priority p from frontier
 - If $\text{IsEnd}(s)$: return solution
 - Add s to explored
 - For each action $a \in \text{Actions}(s)$:
 - Get successor $s' \leftarrow \text{Succ}(s, a)$
 - If s' already in explored: continue
 - Update frontier with s' and priority $p + \text{Cost}(s, a)$
Simulation of UCS

- **Explored:**
 - (C1, 1) : 0
- **Frontier:**
 - (C3, 2) : 3
 - (C2, 0) : 5

State $s = (i, d)$ (current city, #odd-#even)

→ Frontier is a priority queue.
Simulation of UCS

Explored:
(C1, 1) : 0
(C3, 2) : 3

Frontier:
(C2, 0) : 5
(C4, 1) : 9

State $s = (i, d)$ (current city, #odd-#even)
Simulation of UCS

Explored:
(C1, 1) : 0
(C3, 2) : 3
(C2, 0) : 5

Frontier:
(C3, 1) : 6
(C4, -1) : 7
(C4, 1) : 9

State $s = (i, d)$ (current city, #odd-#even)
Simulation of UCS

Explored:
(C1, 1) : 0
(C3, 2) : 3
(C2, 0) : 5
(C3, 1) : 6

Frontier:
(C4, -1) : 7
(C4, 1) : 9
(C4, 0) : 12

State s = (i, d) (current city, #odd-#even)
Simulation of UCS

Explored:
(C1, 1) : 0
(C3, 2) : 3
(C2, 0) : 5
(C3, 1) : 6
(C4, -1) : 7

Frontier:
(C4, 1) : 9
(C4, 0) : 12
(C5, 0) : 14

State \(s = (i, d) \) (current city, #odd-#even)
Simulation of UCS

Explored:
- (C1, 1) : 0
- (C3, 2) : 3
- (C2, 0) : 5
- (C3, 1) : 6
- (C4, -1) : 7
- (C4, 1) : 9

Frontier:
- (C4, 0) : 12
- (C5, 0) : 14
- (C5, 2) : 16

State $s = (i, d)$ (current city, #odd-#even)
Simulation of UCS

Explored:
(C1, 1): 0
(C3, 2): 3
(C2, 0): 5
(C3, 1): 6
(C4, -1): 7
(C4, 1): 9
(C4, 0): 12

Frontier:
(C5, 0): 14
(C5, 2): 16
(C5, 1): 19

State $s = (i, d)$ (current city, #odd-#even)
Simulation of UCS

Explored:
(C1, 1): 0
(C3, 2): 3
(C2, 0): 5
(C3, 1): 6
(C4, -1): 7
(C4, 1): 9
(C4, 0): 12

Frontier:
(C5, 2): 16
(C5, 1): 19

State $s = (i, d)$ (current city, #odd-#even)
Simulation of UCS

Explored:
(C1, 1) : 0
(C3, 2) : 3
(C2, 0) : 5
(C3, 1) : 6
(C4, -1) : 7
(C4, 1) : 9
(C4, 0) : 12
(C5, 0) : 14
(C5, 2) : 16

Frontier:
(C5, 1) : 19

STOP!
(Since we found C5 with #odd-#even > 0)

State $s = (i, d)$ (current city, #odd-#even)
Comparison between DP and UCS

N total states, n of which are closer than goal state

Runtime of DP is O(N)

Runtime of UCS is O(n log n)

Example:
Start state C1, end state C5

- DP explores O(N) states.
- UCS will explore {C1, C2, C5} only. C3 will be in the frontier and C4 will be unexplored.
DP cannot handle cycles

Shortest path is \([C1, C3, C2, C5]\) with cost 13.

Hard to define subproblems in undirected or cyclic graphs.
UCS cannot handle negative edge weights

Best path is $[C1, C2, C3, C4, C5]$ with cost of 8, but UCS will output $[C1, C3, C4, C5]$ with cost of 13 because $C3$ is marked as ‘explored’ before $C2$.
Back to our section problem, can we do the search faster than UCS?
Use A*!

https://qiao.github.io/PathFinding.js/visual/