Back to our section problem,
can we do the search faster than UCS?

©

Use A*!

https://giao.github.io/PathFinding.js/visual/

https://qiao.github.io/PathFinding.js/visual/

Recap of A* Search from Lecture

A heuristic A(s) is any estimate of FutureCost(s).

Run uniform cost search with modified edge costs:
Cost’(s,a) = Cost(s,a) + h(Succ(s,a)) — h(s)

A heuristic h is consistent if
o Cost'(s,a) = Cost(s,a) + h(Succ(s,a)) — h(s) >0
® hf(send) =0,

If h is consistent, A* returns the minimum cost path.

Consistent heuristics

—% Definition: consistency

A heuristic h is consistent if
o Cost'(s,a) = Cost(s, a) + h(Succ(s,a)) — h(s) >0

® h(Send) = 0.

Condition 1: needed for UCS to work (triangle inequality).

Cost(s, a)

S - h(Succ(s,a))
h(s) ® Send

Condition 2: FutureCost(send) = 0 so match it.

CS221

16

Finding a Heuristic by Relaxation

— try to solve an easier (less constrained) version of the
problem

— attain a problem
that can be solved
more efficiently

Relaxation, more formally:

-% Definition: relaxed search problem

A relaxation P’ of a search problem P has costs that satisfy:
Cost’(s,a) < Cost(s,a).

Tradeoff

Efficiency:
h(s) = FutureCost, (s) must be easy to compute
Closed form, easier search, independent subproblems
Tightness:
heuristic h(s) should be close to FutureCost(s)

Don't remove too many constraints

CS221

58

Which heuristic would you use to solve our problem
more efficiently?
Hint: Relaxation!

Section Problem
There exists N cities, labeled from 7 to N.

There are one-way roads connecting some pairs of cities. The
road connecting city i and city j takes c¢(i,j) time to traverse.
However, one can only travel from a city with smaller label to
a city with larger label (each road is one-directional).

From city 1, we want to travel to city N. What is the shortest
time required to make this trip, given the constraint that we
should visit more odd-labeled cities than even labeled
cities?

Original Graph State Graph

2 7
(C2, 0) (C4,-1) (C5, 0)
<) 1
6 7
(C1,1) (C3,1) (C4,0) » (C5, 1)
3
6 7
(C3, 2) (C4,1) (C5, 2)

State s = (i,d) (current city, #odd-#even)

Heuristic for our problem

Remove the constraint that we visit more odd cities than
even cities.

h(s) = h((i, d)) = length of shortest path from city / to city N

Note that the modified shortest path problem has O(N)
states instead of O(N?).

How to compute h?

Reverse all edges, then perform UCS
starting at C5 until C1 is found.

— O(n log n) time (where n is # states
whose distance to city CN is no farther than
the distance of city C1 to city CN)

city C1 C2 C3 C4 C5
h 14 9 13 7 0

Original Graph Modified State Graph
(updated edge costs)

0 0
(C2, 0) (C4,-1) (C5, 0)
(/ ;
0 0
(C1, 1) (C3, 1) (C4, 0) - (C5, 1)
2
0 0
_ (C3,2) (C4, 1) (C5, 2)
city C1 C2 C3 C4 C5

State s = (i,d) (current city, #odd-#even)

Simulation of UCS (A*)
; . Explored: Frontier:

- A 0] (C1,1):0 (C2,0):0
(C3, 2):2
0 5
0 0
(C3,1) (C4,0) (C5,1)
0 0
(C3, 2) (C4,1) (C5, 2)

State s = (i,d) (current city, #odd-#even)

Simulation of UCS (A*)

0 Explored: Frontier:
_ (C1,1):0 (C4,-1):0
SOTEY] (c2,00:0 (C3,2):2
(C3,1):5
0
(C4,0) (C5,1)
0
(C3, 2) (C4,1) (C5, 2)

State s = (i,d) (current city, #odd-#even)

Simulation of UCS (A¥)

Explored: Frontier:
(C5,0) (C1,1):0 (C5,0):0
(C2,0):0 (C3,2):2
(C4,-1):0 (C3,1):5
(C5, 1)
(C3.2) (C4,1) (C5,2)

State s = (i,d) (current city, #odd-#even)

Simulation of UCS (A*)

Explored: Frontier:
(C1,1):0 (C3,2):2
(C2,0):0 (C3,1):5
(C4,-1):0

(C5,0):0

(C3, 2) (C4, 1) (C5, 2)

State s = (i,d) (current city, #odd-#even)

Simulation of UCS (A*)

Explored: Frontier:
(C1,1):0 (C4,1):2
(C2,0):0 (C3,1):5
(C4,-1):0

(C5,0):0

(C3, 2):2

State s = (i,d) (current city, #odd-#even)

Simulation of UCS (A*)

Explored: Frontier:
(C1,1):0 (C5,2):2
(C2,0):0 (C3,1):5
(C4,-1):0

(C5,0):0

(C3, 2):2

(C4,1): 2

State s = (i,d) (current city, #odd-#even)

Simulation of UCS (A*)

Explored: Frontier:
(C1,1):0 (C3,1):5
(C2,0):0

(C4,-1):0

(C5,0):0

(C3, 2):2

(C4,1):2 STOP!
(CH, 2):2

State s = (i,d) (current city, #odd-#even)

Simulation of UCS (A*)

Explored: Frontier:
(C1,1):0 (C3,1):5
(C2,0):0

(C4,-1):0

(C5,0):0

(C3, 2):2

(C4,1):2

(CH, 2):2

Actual Costis2+ h(1) =2+ 14 =16

State s = (i,d) (current city, #odd-#even)

Comparison of States visited

UCS

Explored:

(C1,
(C3,
(C2,
(C3,
(C4,
(C4,
(C4,
(C5,
(C5,

1):0
2):3
0):5
1):6
-1):7
1):9
0):12
0):14
2):16

Frontier:
(C5,1):19

UCS(A¥)
Explored: Frontier:
(C1,1): O (C3,1):5
(C2,0):0
(C4,-1):0
(C5,0):0
(C3,2):2
(C4,1):2
(C5,2):2

Comparison of States visited

UCS UCS(A%)
Explored: Frontier: Explored: Frontier:
(C1,1):0 (C5,1):19 (C1,1):0 (C3,1):5
(C3,2):3 (C2,0):0
(C2,0):5 (C4,-1):0
(C3,1):6 (C5,0):0
(C4,-1):7 (C3,2):2
(C4,1):9 (C4,1):2
(C4,0):12 (C5, 2):2
(C5,0):14

(C5 2) : 1 6 UCS explored 9 states UCS(A*) explored 7 states
; .

Summary

e States Representation/Modelling
o make state representation compact, remove unnecessary information
e DP
o underlying graph cannot have cycles
o visit all reachable states, but no log overhead
e UCS
o actions cannot have negative cost
o visit only a subset of states, log overhead
o A*
o Introduce heuristic to guide search
o ensure that relaxed problem can be solved more efficiently

Now let’s practice modeling our search problems!

MDPs: overview

CS221

Markov decision process

—’% Definition: Markov decision process

States: the set of states
Sstart € States: starting state

Actions(s): possible actions from state s
T(s'|s,a): probability of s if take action a in state s

Reward(s, a, s"): reward for the transition (s, a,s’)
IsEnd(s): whether at end
0 <~ < 1: discount factor (default: 1)

24

What is a solution?

Search problem: path (sequence of actions)

MDP

CS221

—’% Definition: policy

A policy 7 is a mapping from each state s € States to an action a € Actions(s).

S 7(s)
(1,1) S
(2,1) E
(3,1 N

36

lon

policy evaluat

"
al
O
=

Discounting

—% Definition: utility

Path: sg,a17151,a27252,... (action, reward, new state).
The utility with discount v Is
Uy =T1 —I-’YTQ—I—’V2T3+’VB7“4+---

Discount v = 1 (save for the future):
[stay, stay, stay, stay]: 4 +4+4+4 =16

Discount v = 0 (live in the moment):
[stay, stay, stay, stay]: 4+0-(4+---) =4

Discount v = 0.5 (balanced life):

[stay, stay, stay, stay]: 4 + % 4+ i 4+ % 4 =175

CS221

44

CS221

Policy evaluation

—’% Definition: value of a policy

Let V. (s) be the expected utility received by following policy 7 from state s.

_% Definition: Q-value of a policy

Let () (s, a) be the expected utility of taking action a from state s, and then following

policy .
Qr(s,7(s)) @ /
/- e ALY
%(s)@ (s »\sm@\/\\ :

48

Policy evaluation

Plan: define recurrences relating value and Q-value

Qﬂ'(87 7T(@ V /
— T(s s, m(s) ~(s')

Vr(s) O o)

-0

Vo (s) = {O if IsEnd(s)

(Qr(s,m(s)) otherwise.

Qr(s,a) = ZT(S’]S, a)[Reward(s, a, s") + vVi(s')]

8/

CS221

50

CS221

—‘@' Key idea: iterative algorithm

Policy evaluation

Start with arbitrary policy values and repeatedly apply recurrences to converge to true
values.

- Algorithm: policy evaluation

Initialize VW(O)(S) < 0 for all states s.
For iteration t =1, ..., tpE:

For each state s:
VO (s %ZT /|5, 7(s))[Reward(s, 7(s), 8') + V. ()]

7

QU1 (s,m(s))

52

value iteration

v
al
A
=

Optimal value and policy

Goal: try to get directly at maximum expected utility

CS221

—% Definition: optimal value

The optimal value V,(s) is the maximum value attained by any policy.

64

Optimal values and Q-values

Optimal value if take action a in state s:

Qopt(8,a) = ZT(S, a, s')[Reward(s, a, s") + vVopt (s')].

Optimal value from state s:

Voon(s) = {0 if IsEnd(s)

MAaX, e Actions(s) Qopt (5, @) otherwise.

CS221

66

Optimal policies

Given Qopt, read off the optimal policy:

Tropt(S) — 6 aEAIE’lc%}n(s(s) Qopt(sa a)

CS221

68

Time: O(thAS/)

CS221

Value iteration

_ Algorithm: value iteration [Bellman, 1957]—

Initialize Vo(ft)(s) < 0 for all states s.
For iteration t =1, ..., ty:

For each state s:
(t))
VOpt (S) aGArg%}n{S(s ZT 5 @55)[Reward(s a,$) +’7V0pt ()]

\ 7

1
Qs ><s,a>

70

CS221

Convergence

—é Theorem: convergence

Suppose either
e discount v < 1, or
e MDP graph is acyclic.
Then value iteration converges to the correct answer.

\
p— ”

discount v =1, zero rewards

O=—=0)

76

CS221

Summary of algorithms

e Policy evaluation: (MDP, 7) — V;

e Value iteration: MDP — (Qopt, Topt)

78

Ing

reinforcement learni

v
al
A
=

