
Back to our section problem,
can we do the search faster than UCS?

Use A*!
https://qiao.github.io/PathFinding.js/visual/

https://qiao.github.io/PathFinding.js/visual/

Recap of A* Search from Lecture

Consistent heuristics

Definition: consistency

A heuristic h is consistent if

• Cost′(s, a) = Cost(s, a) + h(Succ(s, a))− h(s) ≥ 0

• h(send) = 0.

Condition 1: needed for UCS to work (triangle inequality).

s

send

Cost(s, a)

h(s)

h(Succ(s, a))

Condition 2: FutureCost(send) = 0 so match it.

CS221 16

Finding a Heuristic by Relaxation

→ try to solve an easier (less constrained) version of the
problem

→ attain a problem
that can be solved
more efficiently

Relaxation, more formally:

Tradeoff

Efficiency:

h(s) = FutureCostrel(s) must be easy to compute

Closed form, easier search, independent subproblems

Tightness:

heuristic h(s) should be close to FutureCost(s)

Don’t remove too many constraints

CS221 58

Which heuristic would you use to solve our problem
more efficiently?
Hint: Relaxation!

Section Problem
There exists N cities, labeled from 1 to N.

There are one-way roads connecting some pairs of cities. The
road connecting city i and city j takes c(i,j) time to traverse.
However, one can only travel from a city with smaller label to
a city with larger label (each road is one-directional).

From city 1, we want to travel to city N. What is the shortest
time required to make this trip, given the constraint that we
should visit more odd-labeled cities than even labeled
cities?

C1

C2

C3

C4 C5

2

7

5

3 6

1

Original Graph State Graph

(C1, 1)

(C2, 0)

(C3, 1)

(C3, 2)

(C4,-1)

(C4, 0)

(C4, 1)

(C5, 0)

(C5, 1)

(C5, 2)

5

3

1

2

6

6

7

7

7

Heuristic for our problem

Remove the constraint that we visit more odd cities than
even cities.

h(s) = h((i, d)) = length of shortest path from city i to city N

Note that the modified shortest path problem has O(N)
states instead of O(N2).

How to compute h?

city C1 C2 C3 C4 C5

h 14 9 13 7 0

C1

C2

C3

C4 C5

2

7

5

3 6

1

Reverse all edges, then perform UCS
starting at C5 until C1 is found.

→ O(n log n) time (where n is # states
whose distance to city CN is no farther than
the distance of city C1 to city CN)

Modified State Graph
(updated edge costs)

C1

C2

C3

C4 C5

2

7

5

3 6

1

(C1, 1)

(C2, 0)

(C3, 1)

(C3, 2)

(C4,-1)

(C4, 0)

(C4, 1)

(C5, 0)

(C5, 1)

(C5, 2)

0

2

5

0 0

0

0

0

0

Original Graph

city C1 C2 C3 C4 C5

h 14 9 13 7 0

Simulation of UCS (A*)
Explored:
(C1, 1) : 0

Frontier:
(C2, 0) : 0
(C3, 2) : 2

(C1, 1)

(C2, 0)

(C3, 1)

(C3, 2)

(C4,-1)

(C4, 0)

(C4, 1)

(C5, 0)

(C5, 1)

(C5, 2)

0

2

5

0 0

0

0

0

0

Simulation of UCS (A*)
Explored:
(C1, 1) : 0
(C2, 0) : 0

Frontier:
(C4, -1) : 0
(C3, 2) : 2
(C3, 1) : 5

(C1, 1)

(C2, 0)

(C3, 1)

(C3, 2)

(C4,-1)

(C4, 0)

(C4, 1)

(C5, 0)

(C5, 1)

(C5, 2)

0

2

5

0 0

0

0

0

0

Simulation of UCS (A*)
Explored:
(C1, 1) : 0
(C2, 0) : 0
(C4, -1) : 0

Frontier:
(C5, 0) : 0
(C3, 2) : 2
(C3, 1) : 5

(C1, 1)

(C2, 0)

(C3, 1)

(C3, 2)

(C4,-1)

(C4, 0)

(C4, 1)

(C5, 0)

(C5, 1)

(C5, 2)

0

2

5

0 0

0

0

0

0

Simulation of UCS (A*)
Explored:
(C1, 1) : 0
(C2, 0) : 0
(C4, -1) : 0
(C5, 0) : 0

Frontier:
(C3, 2) : 2
(C3, 1) : 5

(C1, 1)

(C2, 0)

(C3, 1)

(C3, 2)

(C4,-1)

(C4, 0)

(C4, 1)

(C5, 0)

(C5, 1)

(C5, 2)

0

2

5

0 0

0

0

0

0

Simulation of UCS (A*)
Explored:
(C1, 1) : 0
(C2, 0) : 0
(C4, -1) : 0
(C5, 0) : 0
(C3, 2) : 2

Frontier:
(C4, 1) : 2
(C3, 1) : 5

(C1, 1)

(C2, 0)

(C3, 1)

(C3, 2)

(C4,-1)

(C4, 0)

(C4, 1)

(C5, 0)

(C5, 1)

(C5, 2)

0

2

5

0 0

0

0

0

0

Simulation of UCS (A*)
Explored:
(C1, 1) : 0
(C2, 0) : 0
(C4, -1) : 0
(C5, 0) : 0
(C3, 2) : 2
(C4, 1): 2

Frontier:
(C5, 2) : 2
(C3, 1) : 5

(C1, 1)

(C2, 0)

(C3, 1)

(C3, 2)

(C4,-1)

(C4, 0)

(C4, 1)

(C5, 0)

(C5, 1)

(C5, 2)

0

2

5

0 0

0

0

0

0

Simulation of UCS (A*)
Explored:
(C1, 1) : 0
(C2, 0) : 0
(C4, -1) : 0
(C5, 0) : 0
(C3, 2) : 2
(C4, 1) : 2
(C5, 2) : 2

Frontier:
(C3, 1) : 5

STOP!
(C1, 1)

(C2, 0)

(C3, 1)

(C3, 2)

(C4,-1)

(C4, 0)

(C4, 1)

(C5, 0)

(C5, 1)

(C5, 2)

0

2

5

0 0

0

0

0

0

Simulation of UCS (A*)
Explored:
(C1, 1) : 0
(C2, 0) : 0
(C4, -1) : 0
(C5, 0) : 0
(C3, 2) : 2
(C4, 1) : 2
(C5, 2) : 2

Frontier:
(C3, 1) : 5

Actual Cost is 2 + h(1) = 2 + 14 = 16

(C1, 1)

(C2, 0)

(C3, 1)

(C3, 2)

(C4,-1)

(C4, 0)

(C4, 1)

(C5, 0)

(C5, 1)

(C5, 2)

0

2

5

0 0

0

0

0

0

Comparison of States visited

Explored:
(C1, 1) : 0
(C3, 2) : 3
(C2, 0) : 5
(C3, 1) : 6
(C4, -1) : 7
(C4, 1) : 9
(C4, 0) : 12
(C5, 0) : 14
(C5, 2) : 16

Frontier:
(C5, 1) : 19

UCS UCS(A*)

Explored:
(C1, 1) : 0
(C2, 0) : 0
(C4, -1) : 0
(C5, 0) : 0
(C3, 2) : 2
(C4, 1) : 2
(C5, 2) : 2

Frontier:
(C3, 1) : 5

Comparison of States visited

Explored:
(C1, 1) : 0
(C3, 2) : 3
(C2, 0) : 5
(C3, 1) : 6
(C4, -1) : 7
(C4, 1) : 9
(C4, 0) : 12
(C5, 0) : 14
(C5, 2) : 16

Frontier:
(C5, 1) : 19

UCS UCS(A*)

Explored:
(C1, 1) : 0
(C2, 0) : 0
(C4, -1) : 0
(C5, 0) : 0
(C3, 2) : 2
(C4, 1) : 2
(C5, 2) : 2

Frontier:
(C3, 1) : 5

UCS explored 9 states UCS(A*) explored 7 states

Summary
● States Representation/Modelling

○ make state representation compact, remove unnecessary information
● DP

○ underlying graph cannot have cycles
○ visit all reachable states, but no log overhead

● UCS
○ actions cannot have negative cost
○ visit only a subset of states, log overhead

● A*
○ Introduce heuristic to guide search
○ ensure that relaxed problem can be solved more efficiently

Now let’s practice modeling our search problems!

MDPs: overview

Markov decision process

Definition: Markov decision process

States: the set of states

sstart 2 States: starting state

Actions(s): possible actions from state s

T (s0|s, a): probability of s0 if take action a in state s

Reward(s, a, s0): reward for the transition (s, a, s0)

IsEnd(s): whether at end

0  �  1: discount factor (default: 1)

CS221 24

What is a solution?

Search problem: path (sequence of actions)

MDP:

Definition: policy

A policy ⇡ is a mapping from each state s 2 States to an action a 2 Actions(s).

Example: volcano crossing

s ⇡(s)

(1,1) S

(2,1) E

(3,1) N

... ...

CS221 36

MDPs: policy evaluation

Discounting

Definition: utility

Path: s0, a1r1s1, a2r2s2, . . . (action, reward, new state).

The utility with discount � is

u1 = r1 + �r2 + �2r3 + �3r4 + · · ·

Discount � = 1 (save for the future):

[stay, stay, stay, stay]: 4 + 4 + 4 + 4 = 16

Discount � = 0 (live in the moment):

[stay, stay, stay, stay]: 4 + 0 · (4 + · · ·) = 4

Discount � = 0.5 (balanced life):

[stay, stay, stay, stay]: 4 + 1
2 · 4 + 1

4 · 4 + 1
8 · 4 = 7.5

CS221 44

Policy evaluation

Definition: value of a policy

Let V⇡(s) be the expected utility received by following policy ⇡ from state s.

Definition: Q-value of a policy

Let Q⇡(s, a) be the expected utility of taking action a from state s, and then following
policy ⇡.

⇡(s)
T (s0|s,⇡(s))

s0

s,⇡(s)sV⇡(s)

V⇡(s0)
Q⇡(s,⇡(s))

CS221 48

Policy evaluation

Plan: define recurrences relating value and Q-value

⇡(s)
T (s0|s,⇡(s))

s0

s,⇡(s)sV⇡(s)

V⇡(s0)
Q⇡(s,⇡(s))

V⇡(s) =

(
0 if IsEnd(s)

Q⇡(s,⇡(s)) otherwise.

Q⇡(s, a) =
X

s0

T (s0|s, a)[Reward(s, a, s0) + �V⇡(s
0)]

CS221 50

Policy evaluation

Key idea: iterative algorithm

Start with arbitrary policy values and repeatedly apply recurrences to converge to true
values.

Algorithm: policy evaluation

Initialize V (0)
⇡ (s) 0 for all states s.

For iteration t = 1, . . . , tPE:

For each state s:
V (t)
⇡ (s)

X

s0

T (s0|s,⇡(s))[Reward(s,⇡(s), s0) + �V (t�1)
⇡ (s0)]

| {z }
Q(t�1)(s,⇡(s))

CS221 52

MDPs: value iteration

Optimal value and policy

Goal: try to get directly at maximum expected utility

Definition: optimal value

The optimal value Vopt(s) is the maximum value attained by any policy.

CS221 64

Optimal values and Q-values

a
T (s0|s, a)

s

s, a s0

Vopt(s)

Vopt(s0)

Qopt(s, a)

Optimal value if take action a in state s:

Qopt(s, a) =
X

s0

T (s, a, s0)[Reward(s, a, s0) + �Vopt(s
0)].

Optimal value from state s:

Vopt(s) =

(
0 if IsEnd(s)

maxa2Actions(s)Qopt(s, a) otherwise.

CS221 66

Optimal policies

a
T (s0|s, a)

s

s, a s0

Vopt(s)

Vopt(s0)

Qopt(s, a)

Given Qopt, read o↵ the optimal policy:

⇡opt(s) = arg max
a2Actions(s)

Qopt(s, a)

CS221 68

Value iteration

Algorithm: value iteration [Bellman, 1957]

Initialize V
(0)
opt (s) 0 for all states s.

For iteration t = 1, . . . , tVI:

For each state s:
V

(t)
opt (s) max

a2Actions(s)

X

s0

T (s, a, s0)[Reward(s, a, s0) + �V
(t�1)
opt (s0)]

| {z }
Q(t�1)

opt (s,a)

Time: O(tVISAS0)

CS221 70

Convergence

Theorem: convergence

Suppose either

• discount � < 1, or

• MDP graph is acyclic.

Then value iteration converges to the correct answer.

Example: non-convergence

discount � = 1, zero rewards

CS221 76

Summary of algorithms

• Policy evaluation: (MDP, ⇡) ! V⇡

• Value iteration: MDP ! (Qopt,⇡opt)

CS221 78

MDPs: reinforcement learning

