
CS221 Problem Workout Solutions
Week 4

1) [CA session] Problem 1

Sabina has just moved to a new town, which is represented as a grid of locations
(see below). She needs to visit various shops S1, . . . , Sk. From a location on the grid,
Sabina can move to the location that is immediately north, south, east, or west, but
certain locations have been blocked off and she cannot enter them. It takes one unit
of time to move between adjacent locations. Here is an example layout of the town:

Sabina lives at (1, 1), and no location contains more than one building (Sabina’s house
or a shop).

(a) Sabina wants to start at her house, visit the shops S1, . . . , Sk in any order,
and then return to her house as quickly as possible. We will construct a search
problem to find the fastest route for Sabina. Each state is modeled as a tuple
s = (x, y, A), where (x, y) is Sabina’s current position, and A is some auxiliary
information that you need to choose. If an action is invalid from a given state, set
its cost to infinity. Let V be the set of valid (non-blocked) locations; use this to
define your search problem. You may assume that the locations of the k shops are
known. You must choose a minimal representation of A and solve this problem
for general k. Be precise!

1



• Describe A: A = (A1, A2, . . . Ak) where Ai ∈ {0, 1} is a boolean representing
whether Si has been visited or not.

• sstart = (1, 1, [0, . . . , 0])

• Actions((x, y, A)) = {N, S,E,W}

• Succ((x, y, A), a) =

Succ((x, y, A), a) =


(x, y + 1, A′) if a = N
(x, y − 1, A′) if a = S
(x+ 1, y, A′) if a = E
(x− 1, y, A′) if a = W,

• Cost((x, y, A), a) =: Let (x′, y′, A′) = Succ((x, y, A), a). Then Cost((x, y, A)) =
1 if (x′, y′) ∈ V and ∞ otherwise.

• IsGoal((x, y, A)) = [x = 1 ∧ y = 1 ∧ A = [1, . . . , 1]]

(b) Recall that Sabina is allowed to visit the shops in any order. But she is impatient
and doesn’t want to wait around for your search algorithm to finish running. In
response, you will use the A* algorithm, but you need a heuristic. For each pair
of shops (Si, Sj) where i ̸= j and 1 ≤ i, j ≤ k, define a consistent heuristic hi,j

that approximates the time it takes to ensure that shops Si and Sj are visited
and then return home. Computing hi,j(s) should take O(1) time.

Solution We will define hi,j(x, y, A) now: based on A, we will have visited
some subset of shops in {Si, Sj}. We need to compute the distance to visit the
remaining shops and return home. Let d(p, q) refer to the Manhattan distance
between points p and q, which can be computed in O(1) time. Note that if we

2



haven’t visited either Si or Sj, we must take the min over visiting either one first,
in order to produce a consistent heuristic.

hi,j(x, y, A) =



min{d((x, y), Si) + d(Si, Sj) + d(Sj, (1, 1)),

d((x, y), Sj) + d(Sj, Si) + d(Si, (1, 1)) if Ai = 0 ∧ Aj = 0,

d((x, y), Sj) + d(Sj, (1, 1)) if Ai = 1 ∧ Aj = 0,

d((x, y), Si) + d(Si, (1, 1)) if Ai = 0 ∧ Aj = 1,

d((x, y), (1, 1)) if Ai = 1 ∧ Aj = 1.

It is clear that computing hi,j(x, y, A) is O(1) it makes O(1) calls to d(·, ·).

3



2) [Breakouts] Problem 2

In 16th century England, there were a set of N + 1 cities C = {0, 1, 2, . . . , N}. Con-
necting these cities were a set of bidirectional roads R: (i, j) ∈ R means that there is
a road between city i and city j. Assume there is at most one road between any pair
of cities, and that all the cities are connected. If a road exists between i and j, then it
takes T (i, j) hours to go from i to j.

Romeo lives in city 0 and wants to travel along the roads to meet Juliet, who lives in
city N . They want to meet.

(a) Fast-forward 400 years and now our star-crossed lovers now have iPhones to co-
ordinate their actions. To reduce the commute time, they will both travel at the
same time, Romeo from city 0 and Juliet from city N .
To reduce confusion, they will reconnect after each traveling a road. For example,
if Romeo travels from city 3 to city 5 in 10 hours at the same time that Juliet
travels from city 9 to city 7 in 8 hours, then Juliet will wait 2 hours. Once they
reconnect, they will both traverse the next road (neither is allowed to remain in
the same city). Furthermore, they must meet in the end in a city, not in the
middle of a road. Assume it is always possible for them to meet in a city.
Help them find the best plan for meeting in the least amount of time by for-
mulating the task as a (single-agent) search problem. Fill out the rest of the
specification:

• Each state is a pair s = (r, j) where r ∈ C and j ∈ C are the cities Romeo
and Juliet are currently in, respectively.

• Actions((r, j)) =

• Cost((r, j), a) =

• Succ((r, j), a) =

• sstart = (0, N)

• IsGoal((r, j)) = I[r = j] (whether the two are in the same city).

Solution

• Each state s = (r, j) is the pair of cities that Romeo and Juliet are currently
in, respectively.

4



• Actions((r, j)) = {(r′, j′) : (r, r′) ∈ R, (j, j′) ∈ R} corresponds to both travel-
ing to a connected city

• Cost((r, j), (r′, j′)) = max(T (r, r′), T (j, j′)) is the maximum over the two
times.

• Succ((r, j), (r′, j′)) = (r′, j′): just go to the desired city

5



(b) Assume that Romeo and Juliet have done their CS221 homework and used Uni-
form Cost Search to compute M(i, k), the minimum time it takes one person to
travel from city i to city k for all pairs of cities i, k ∈ C.
Recall that an A* heuristic h(s) is consistent if

h(s) ≤ Cost(s, a) + h(Succ(s, a)). (1)

Give a consistent A* heuristic for the search problem in (a). Your heuristic should
take O(N) time to compute, assuming that looking up M(i, k) takes O(1) time. In
one sentence, explain why it is consistent. Hint: think of constructing a heuristic
based on solving a relaxed search problem.

h((r, j)) = (2)

Solution Consider the relaxed search problem of giving Romeo and Juliet the
option to not wait for each other at every city, but still allowing the waiting at
meeting point. Then if Romeo and Juliet are in (r, j), then traveling to some city
c in this fashion takes max(M(r, c),M(j, c)). We just need to minimize over all
possible cities c:

h((r, j)) = min
c∈C

max{M(r, c),M(j, c)}. (3)

6



3) [CA session] Problem 3

(a) Sabina wants to go from her house (located at 1) to the gym (located at n).
At each location s, she can either (i) deterministically walk forward to the next
location s+ 1 (takes 1 unit of time) or (ii) wait for the bus. The bus comes with
probability ϵ, in which case, she will reach the gym in 1 + α(n− s) units of time,
where α is some parameter. If the bus doesn’t come, well, she stays put, and that
takes 1 unit of time.

We have formalized the problem as an MDP for you:

• State: s ∈ {1, 2, . . . , n} is Sabina’s location
• Actions(s) = {Walk,Bus}

• Reward(s,Walk, s′) =

{
−1 if s′ = s+ 1

−∞ otherwise

• Reward(s,Bus, s′) =


−1− α(n− s) if s′ = n

−1 if s′ = s

−∞ otherwise

• T (s′|s,Walk) =

{
1 if s′ = s+ 1

0 otherwise

• T (s′|s,Bus) =


ϵ if s′ = n

1− ϵ if s′ = s

0 otherwise
• IsEnd(s) = 1[s = n]

7



Compute a closed form expression for the value of the “always walk” policy and
the “always wait for the bus” policy (using some or all of the variables ϵ, α, n).
Assume a discount rate of γ = 1.

• VWalk(s) =

• VBus(s) =

• For what values of ϵ (as a function of α and n) is it advantageous to walk
rather than take the bus?

8



Solution Expected value for always walking:

VWalk = −(n− s).

Expected value for always waiting for bus:

VBus(s) = ϵ(−1− α(n− s)) + (1− ϵ)(−1 + VBus(s)).

Simplifying, we get:

VBus(s) = −α(n− s)− 1

ϵ
.

For walking to be preferable, we need VWalk(s) ≥ VBus(s), or equivalently:

n− s ≤ α(n− s) +
1

ϵ
⇔ (1− α)(n− s) ≤ 1

ϵ
⇔

{
ϵ ≤ 1

(1−α)(n−s)
, α < 1

ϵ > 0 , α ≥ 1.

9


